Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/88312
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineering-
dc.creatorHong, S-
dc.creatorZou, G-
dc.creatorKim, H-
dc.creatorHuang, D-
dc.creatorWang, P-
dc.creatorAlshareef, HN-
dc.date.accessioned2020-10-29T01:02:18Z-
dc.date.available2020-10-29T01:02:18Z-
dc.identifier.urihttp://hdl.handle.net/10397/88312-
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.rights© 2020 American Chemical Society. This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.en_US
dc.rightsThe following publication Hong, S., Zou, G., Kim, H., Huang, D., Wang, P., & Alshareef, H. N. (2020). Photothermoelectric Response of Ti3C2T x MXene Confined Ion Channels. ACS nano, 14(7), 9042-9049, is available at https://doi.org/10.1021/acsnano.0c04099en_US
dc.subjectMXene lamellar membranesen_US
dc.subjectNanoconfined cation channelsen_US
dc.subjectPhotothermal conversionen_US
dc.subjectThermo-osmosisen_US
dc.subjectThermoelectric Seebeck coefficienten_US
dc.subjectTitanium carbideen_US
dc.titlePhotothermoelectric Response of Ti3C2Tx MXene Confined Ion Channelsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage9042-
dc.identifier.epage9049-
dc.identifier.volume14-
dc.identifier.issue7-
dc.identifier.doi10.1021/acsnano.0c04099-
dcterms.abstractWith recent growing interest in biomimetic smart nanochannels, a biological sensory transduction in response to external stimuli has been of particular interest in the development of biomimetic nanofluidic systems. Here we demonstrate the MXene-based subnanometer ion channels that convert external temperature changes to electric signals via preferential diffusion of cations under a thermal gradient. In particular, coupled with a photothermal conversion feature of MXenes, an array of the nanoconfined Ti3C2Tx ion channels can capture trans-nanochannel diffusion potentials under a light-driven axial temperature gradient. The nonisothermal open-circuit potential across channels is enhanced with increasing cationic permselectivity of confined channels, associated with the ionic concentration or pH of permeant fluids. The photothermoelectric ionic response (evaluated from the ionic Seebeck coefficient) reached up to 1 mV·K-1, which is comparable to biological thermosensory channels, and demonstrated stability and reproducibility in the absence and presence of an ionic concentration gradient. With advantages of physicochemical tunability and easy fabrication process, the lamellar ion conductors may be an important nanofluidic thermosensation platform possibly for biomimetic sensory systems.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationACS nano, 2020, v. 14, no. 7, p. 9042-9049-
dcterms.isPartOfACS nano-
dcterms.issued2020-
dc.identifier.scopus2-s2.0-85089710413-
dc.identifier.pmid32538614-
dc.identifier.eissn1936-086X-
dc.description.validate202010 bcma-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.pubStatusPublisheden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Hong_Photothermoelectric_Response_Ti3C2T.pdf2.88 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

43
Last Week
0
Last month
Citations as of Apr 21, 2024

Downloads

21
Citations as of Apr 21, 2024

SCOPUSTM   
Citations

84
Citations as of Apr 4, 2024

WEB OF SCIENCETM
Citations

78
Citations as of Apr 18, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.