Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/88215
Title: | A numerical method to compute Fisher information for a special case of heterogeneous negative binomial regression | Authors: | Guo, X Fu, Q Wang, Y Land, KC |
Issue Date: | Aug-2020 | Source: | Communications on pure and applied analysis, Aug. 2020, v. 19, no. 8, p. 4179-4189 | Abstract: | Negative binomial regression has been widely applied in various research settings to account for counts with overdispersion. Yet, when the gamma scale parameter, ν, is parameterized, there is no direct algorithmic solution to the Fisher Information matrix of the associated heterogeneous negative binomial regression, which seriously limits its applications to a wide range of complex problems. In this research, we propose a numerical method to calculate the Fisher information of heterogeneous negative binomial regression and accordingly develop a preliminary framework for analyzing incomplete counts with overdispersion. This method is implemented in R and illustrated using an empirical example of teenage drug use in America. | Keywords: | Regression analysis Incomplete counts Overdispersion Heterogeneous negative binomial regression Fisher information Gamma scale parameter |
Publisher: | American Institute of Mathematical Sciences | Journal: | Communications on pure and applied analysis | ISSN: | 1534-0392 | DOI: | 10.3934/cpaa.2020187 | Rights: | This article has been published in a revised form in Communications on Pure & Applied Analysis [http://dx.doi.org/10.3934/cpaa.2020187]. This version is free to download for private research and study only. Not for redistribution, re-sale or use in derivative works. |
Appears in Collections: | Journal/Magazine Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
20200314CPAA_FinalAcceptedManuscript.pdf | Pre-Published version | 232.73 kB | Adobe PDF | View/Open |
Page views
172
Last Week
0
0
Last month
Citations as of Nov 10, 2024
Downloads
52
Citations as of Nov 10, 2024
SCOPUSTM
Citations
5
Citations as of Nov 14, 2024
WEB OF SCIENCETM
Citations
5
Citations as of Oct 10, 2024
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.