Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/87512
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineering-
dc.creatorElbaz, Ken_US
dc.creatorShen, SLen_US
dc.creatorSun, WJen_US
dc.creatorYin, ZYen_US
dc.creatorZhou, Aen_US
dc.date.accessioned2020-07-16T03:57:44Z-
dc.date.available2020-07-16T03:57:44Z-
dc.identifier.issn2169-3536en_US
dc.identifier.urihttp://hdl.handle.net/10397/87512-
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.rightsThis work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/en_US
dc.rightsThe following publication K. Elbaz, S. Shen, W. Sun, Z. Yin and A. Zhou, "Prediction Model of Shield Performance During Tunneling via Incorporating Improved Particle Swarm Optimization Into ANFIS," in IEEE Access, vol. 8, pp. 39659-39671, 2020, is available at https://doi.org/10.1109/ACCESS.2020.2974058.en_US
dc.subjectAdvance rateen_US
dc.subjectEarth pressure balance shielden_US
dc.subjectFuzzy C-meanen_US
dc.subjectImproved PSO-ANFISen_US
dc.subjectPrinciple component analysisen_US
dc.titlePrediction model of shield performance during tunneling via incorporating improved particle swarm optimization into ANFISen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage39659en_US
dc.identifier.epage39671en_US
dc.identifier.volume8en_US
dc.identifier.doi10.1109/ACCESS.2020.2974058en_US
dcterms.abstractThis paper proposes a new computational model to predict the earth pressure balance (EPB) shield performance during tunnelling. The proposed model integrates an improved particle swarm optimization (PSO) with adaptive neurofuzzy inference system (ANFIS) based on the fuzzy C-mean (FCM) clustering method. In particular, the proposed model uses shield operational parameters as inputs and computes the advance rate as the output. Prior to modeling, critical operational parameters are identified through principle component analysis (PCA). The hybrid model is applied to the prediction of the shield performance in the tunnel section of Guangzhou Metro Line 9 in China. The prediction results indicate that the improved PSO-ANFIS model shows high accuracy in predicting the EPB shield performance in terms of the multiobjective fitness function [i.e. root mean square error (RMSE) = 0.07 , coefficient of determination ( R^{2}) = 0.88 , variance account (VA) = 0.84 for testing datasets, respectively]. The good agreement between the actual measurements and predicted values demonstrates that the proposed model is promising for predicting the EPB shield tunnel performance with good accuracy.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIEEE access, 2020, v. 8, 8999609, p. 39659-39671en_US
dcterms.isPartOfIEEE accessen_US
dcterms.issued2020-
dc.identifier.isiWOS:000525545900177-
dc.identifier.scopus2-s2.0-85081013413-
dc.identifier.artn8999609en_US
dc.description.validate202007 bcma-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Elbaz_Prediction_Model_Shield.pdf1.98 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

91
Last Week
1
Last month
Citations as of Dec 21, 2025

Downloads

92
Citations as of Dec 21, 2025

SCOPUSTM   
Citations

111
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

97
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.