Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/826
Title: | Approximation algorithms design for disk partial covering problem | Authors: | Xiao, B Cao, J Zhuge, Q He, Y Sha, EH |
Issue Date: | 2004 | Source: | ISPAN 2004 : 7th International Symposium on Parallel Architectures, Algorithms and Networks : 10-12 May 2004, Hong Kong, SAR, China, p.104-109 | Abstract: | Mobile servers are established to provide services for mobile nodes in an anticipated area. If the distribution of mobile nodes can be foreseen, the location of mobile servers becomes critical to the QoS of wireless systems. Under resource and topology constraints, it is very difficult to figure out a solution, or unable to cover all given mobile nodes within limited number of mobile servers. In this paper, we study the issue of the partial covering problem such that part of mobile nodes to be covered. Several approximation algorithms are proposed to cover the maximum number of elements. For real time systems, such as the battle-field communication system, the proposed algorithms with polynomial-time complexity can be efficiently applied. The algorithm complexity analysis illustrates the improvement made by our algorithms. The experimental results show that the performance of our algorithms is much better than other existing 3-approximation algorithm for the robust k-center problem. | Keywords: | Algorithms Approximation theory Computational complexity Constraint theory Polynomials Problem solving Quality of service Real time systems Topology Wireless telecommunication systems |
Publisher: | IEEE Computer Society | ISBN: | 0-7695-2135-5 | Rights: | © 2004 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder. |
Appears in Collections: | Conference Paper |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
algorithms-design_04.pdf | 153.81 kB | Adobe PDF | View/Open |
Page views
96
Last Week
1
1
Last month
Citations as of May 28, 2023
Downloads
156
Citations as of May 28, 2023
SCOPUSTM
Citations
16
Last Week
0
0
Last month
1
1
Citations as of Jun 2, 2023
WEB OF SCIENCETM
Citations
10
Last Week
0
0
Last month
0
0
Citations as of Jun 1, 2023

Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.