Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/82233
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technology-
dc.creatorYang, C-
dc.creatorWang, X-
dc.creatorWang, JY-
dc.creatorWang, XJ-
dc.creatorChen, WT-
dc.creatorLu, N-
dc.creatorSiniossoglou, S-
dc.creatorYao, ZP-
dc.creatorLiu, K-
dc.date.accessioned2020-05-05T05:59:12Z-
dc.date.available2020-05-05T05:59:12Z-
dc.identifier.issn0896-6273-
dc.identifier.urihttp://hdl.handle.net/10397/82233-
dc.language.isoenen_US
dc.publisherCell Pressen_US
dc.rights©2019 The Author(s). Published by Elsevier Inc.This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Yang, C., Wang, X., Wang, J. Y., Wang, X. J., Chen, W. T., Lu, N., ... & Liu, K. (2020). Rewiring neuronal glycerolipid metabolism determines the extent of axon regeneration. Neuron, 105(2), 276-292 is available at https://dx.doi.org/10.1016/j.neuron.2019.10.009en_US
dc.titleRewiring neuronal glycerolipid metabolism determines the extent of axon regenerationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage276-
dc.identifier.epage292-
dc.identifier.volume105-
dc.identifier.issue2-
dc.identifier.doi10.1016/j.neuron.2019.10.009-
dcterms.abstractHow adult neurons coordinate lipid metabolism to regenerate axons remains elusive. We found that depleting neuronal lipin1, a key enzyme controlling the balanced synthesis of glycerolipids through the glycerol phosphate pathway, enhanced axon regeneration after optic nerve injury. Axotomy elevated lipin1 in retinal ganglion cells, which contributed to regeneration failure in the CNS by favorably producing triglyceride (TG) storage lipids rather than phospholipid (PL) membrane lipids in neurons. Regrowth induced by lipin1 depletion required TG hydrolysis and PL synthesis. Decreasing TG synthesis by deleting neuronal diglyceride acyltransferases (DGATs) and enhancing PL synthesis through the Kennedy pathway promoted axon regeneration. In addition, peripheral neurons adopted this mechanism for their spontaneous axon regeneration. Our study reveals a critical role of lipin1 and DGATs as intrinsic regulators of glycerolipid metabolism in neurons and indicates that directing neuronal lipid synthesis away from TG synthesis and toward PL synthesis may promote axon regeneration.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationNeuron, 22 Jan. 2020, v. 105, no. 2, p. 276-292-
dcterms.isPartOfNeuron-
dcterms.issued2020-
dc.identifier.isiWOS:000508633600011-
dc.identifier.scopus2-s2.0-85077869612-
dc.identifier.pmid31786011-
dc.identifier.eissn1097-4199-
dc.description.validate202006 bcrc-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.pubStatusPublisheden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Yang_Rewiring_Neuronal_Glycerolipid.pdf6.9 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

51
Citations as of Jun 19, 2022

Downloads

58
Citations as of Jun 19, 2022

SCOPUSTM   
Citations

36
Citations as of Jun 23, 2022

WEB OF SCIENCETM
Citations

37
Citations as of Jun 23, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.