Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/82126
DC Field | Value | Language |
---|---|---|
dc.contributor | Department of Industrial and Systems Engineering | - |
dc.creator | Gao, M | - |
dc.creator | Chen, M | - |
dc.creator | Liu, A | - |
dc.creator | Ip, WH | - |
dc.creator | Yung, KL | - |
dc.date.accessioned | 2020-05-05T05:58:46Z | - |
dc.date.available | 2020-05-05T05:58:46Z | - |
dc.identifier.uri | http://hdl.handle.net/10397/82126 | - |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers | en_US |
dc.rights | This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ | en_US |
dc.rights | The following publication M. Gao, M. Chen, A. Liu, W. H. Ip and K. L. Yung, "Optimization of Microservice Composition Based on Artificial Immune Algorithm Considering Fuzziness and User Preference," in IEEE Access, vol. 8, pp. 26385-26404, 2020, is available at https://doi.org/10.1109/ACCESS.2020.2971379 | en_US |
dc.subject | Fuzzy analytic hierarchy process (FAHP) | en_US |
dc.subject | Microservice | en_US |
dc.subject | Microservice group | en_US |
dc.subject | QoS attribute | en_US |
dc.subject | Quality of service (QoS) | en_US |
dc.subject | The parallel cooperative short-term memory injection multi-clone clonal selection algorithm (ParaCoSIMCSA) | en_US |
dc.title | Optimization of microservice composition based on artificial immune algorithm considering fuzziness and user preference | en_US |
dc.type | Journal/Magazine Article | en_US |
dc.identifier.spage | 26385 | - |
dc.identifier.epage | 26404 | - |
dc.identifier.volume | 8 | - |
dc.identifier.doi | 10.1109/ACCESS.2020.2971379 | - |
dcterms.abstract | Microservices is a new paradigm in cloud computing that separates traditional monolithic applications into groups of services. These individual services may correlate or cross multi-clouds. Compared to a monolithic architecture, microservices are faster to develop, easier to deploy, and maintain by leveraging modern containers or other lightweight virtualization. To satisfy the requirements of end-users and preferences, appropriate microservices must be selected to compose complicated workflows or processes from within a large space of candidate services. The microservice composition should consider several factors, such as user preference, correlation effects, and fuzziness. Due to this problem being NP-hard, an efficient metaheuristic algorithm to solve large-scale microservice compositions is essential. We describe a microservice composition problem for multi-cloud environments that considers service grouping relations and corresponding correlation effects of the service providers within intra- or inter-clouds. We use the triangular fuzzy number to describe the uncertainty of QoS attributes, the improved fuzzy analytic hierarchy process to calculate multi-attribute QoS, construct fuzzy weights related to user preferences, and transform the multi-optimal problem into a single-optimal problem. We propose a new artificial immune algorithm based on the immune memory clone and clone selection algorithms. We also introduce several optimal strategies and conduct numerical experiments to verify effects and efficiencies. Our proposed method combines the advantages of monoclone, multi-clone, and co-evolution, which are suitable for the large-scale problems addressed in this paper. | - |
dcterms.accessRights | open access | en_US |
dcterms.bibliographicCitation | IEEE access, 2020, v. 8, 8979424, p. 26385-26404 | - |
dcterms.isPartOf | IEEE access | - |
dcterms.issued | 2020 | - |
dc.identifier.isi | WOS:000524666400001 | - |
dc.identifier.scopus | 2-s2.0-85079625543 | - |
dc.identifier.eissn | 2169-3536 | - |
dc.identifier.artn | 8979424 | - |
dc.description.validate | 202006 bcma | - |
dc.description.oa | Version of Record | en_US |
dc.identifier.FolderNumber | OA_Scopus/WOS | en_US |
dc.description.pubStatus | Published | en_US |
dc.description.oaCategory | CC | en_US |
Appears in Collections: | Journal/Magazine Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Gao_Optimization_microservice_composition.pdf | 5.43 MB | Adobe PDF | View/Open |
Page views
112
Last Week
1
1
Last month
Citations as of Sep 8, 2024
Downloads
180
Citations as of Sep 8, 2024
SCOPUSTM
Citations
30
Citations as of Sep 19, 2024
WEB OF SCIENCETM
Citations
21
Citations as of Sep 19, 2024
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.