Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/81588
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineering-
dc.creatorGuan, S-
dc.creatorSolberg, K-
dc.creatorWan, D-
dc.creatorBerto, F-
dc.creatorWelo, T-
dc.creatorYue, TM-
dc.creatorChan, KC-
dc.date.accessioned2020-01-21T08:49:00Z-
dc.date.available2020-01-21T08:49:00Z-
dc.identifier.issn0264-1275-
dc.identifier.urihttp://hdl.handle.net/10397/81588-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).en_US
dc.rightsThe following publication Guan, S., Solberg, K., Wan, D., Berto, F., Welo, T., Yue, T. M., & Chan, K. C. (2019). Formation of fully equiaxed grain microstructure in additively manufactured AlCoCrFeNiTi0. 5 high entropy alloy. Materials & Design, 184, 108202, is available at https://doi.org/10.1016/j.matdes.2019.108202en_US
dc.subjectAdditive manufacturingen_US
dc.subjectAlCoCrFeNiTi0.5 high entropy alloyen_US
dc.subjectDendrite fragmentationen_US
dc.subjectEquiaxed grain formationen_US
dc.subjectEutectic reactionen_US
dc.subjectNucleationen_US
dc.titleFormation of fully equiaxed grain microstructure in additively manufactured AlCoCrFeNiTi0.5 high entropy alloyen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume184-
dc.identifier.doi10.1016/j.matdes.2019.108202-
dcterms.abstractIn this work, the non-equiatomic high entropy alloy AlCoCrFeNiTi0.5 was additively manufactured via the laser engineered net shaping (LENS™) process. Contrary to the columnar grain microstructure commonly observed in previously reported alloys, the as-deposited AlCoCrFeNiTi0.5 specimens exhibit a fully equiaxed grain microstructure in a wide range of temperature gradients G (85 to 1005 K/mm) and solidification velocities V (5 to 20 mm/s). The main microstructural characteristics were found to be B2-structured proeutectic dendrites delineated by lamellar or rod-like B2/A2 eutectic structures. The formation of this microstructural feature can be discussed with the aid of Scheil's solidification model. The proeutectic B2-structured dendrites were frequently found to be fragmented, which may provide profuse effective nucleation sites, and hence promote equiaxed grain formation. Furthermore, we estimated the volume fraction ϕ values of equiaxed crystals at solidification front for various G - V combinations established in this paper, which can provide a theoretical basis for our experimental findings. The current work provides guidelines for producing fully equiaxed alloys by the additive manufacturing (AM) process.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMaterials and design, 2019, v. 184, 108202-
dcterms.isPartOfBiology-
dcterms.issued2019-
dc.identifier.scopus2-s2.0-85073072160-
dc.identifier.eissn1873-4197-
dc.identifier.artn108202-
dc.description.validate202001 bcma-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Guan_Formation_equiaxed_grain.pdf3.38 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

118
Last Week
1
Last month
Citations as of Nov 17, 2024

Downloads

138
Citations as of Nov 17, 2024

SCOPUSTM   
Citations

55
Citations as of Nov 14, 2024

WEB OF SCIENCETM
Citations

50
Citations as of Nov 14, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.