Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/81558
Title: | Measurement and forecasting of high-speed rail track slab deformation under uncertain SHM data using Variational Heteroscedastic Gaussian Process | Authors: | Wang, QA Ni, YQ |
Issue Date: | 1-Aug-2019 | Source: | Sensors (Switzerland), 1 Aug. 2019, v. 19, no. 15, 3311 | Abstract: | Uncertainty in sensor data complicates the construction of baseline models for the measurement and forecasting (M&F) of high-speed rail (HSR) track slab deformation. Standard Gaussian process (GP) assumes a uniform noise throughout the input space. However, in the application to modelling of HSR structural health monitoring (SHM) data, this assumption can be unrealistic, because of its unique heteroscedastic uncertainty that is induced by dynamic train loading, electromagnetic interference, large temperature variation, and daily maintenance actions of railway track infrastructure. Therefore, this study firstly develops a novel online SHM system enabled by fiber Bragg grating (FBG) technology to eliminate electromagnetic interference on SHM data for continuous and long-term monitoring of track slab deformation, with the capacity of temperature self-compensation. To deal with different sources of uncertainty, the study explores Variational Heteroscedastic Gaussian Process (VHGP) approach while using variational Bayesian and Gaussian approximation for data modelling, estimation of the monitoring data uncertainty, and further data forecasting. The results demonstrate that the VHGP framework yields more robust regression results and the estimated confidence level can better depict the heteroscedastic variances of the noise in HSR data. Higher accuracy for both regression and forecasting is gained through VHGP and the position with maximum noise can be more accurately forecasted with a smooth varying confidence interval. Based on in-situ measurement data, the uncertainty levels for all sensors are estimated together with corresponding deformation profiles for the instrumented segment and three typical types of uncertainty are summarized during the M&F process of HSR track slab deformation. | Keywords: | Fiber Bragg grating Heteroscedastic Gaussian Process High-speed rail Measurement and forecasting Structural health monitoring Uncertainty |
Publisher: | Molecular Diversity Preservation International (MDPI) | Journal: | Sensors (Switzerland) | ISSN: | 1424-8220 | DOI: | 10.3390/s19153311 | Rights: | © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). The following publication Wang Q-A, Ni Y-Q. Measurement and Forecasting of High-Speed Rail Track Slab Deformation under Uncertain SHM Data Using Variational Heteroscedastic Gaussian Process. Sensors. 2019; 19(15):3311, is available at https://doi.org/10.3390/s19153311 |
Appears in Collections: | Journal/Magazine Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Wang_Measurement_forecasting_high-speed.pdf | 2.18 MB | Adobe PDF | View/Open |
Page views
349
Last Week
1
1
Last month
Citations as of May 28, 2023
Downloads
154
Citations as of May 28, 2023
SCOPUSTM
Citations
19
Citations as of Jun 1, 2023
WEB OF SCIENCETM
Citations
15
Citations as of Jun 1, 2023

Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.