Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/81398
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.creatorKhan, WAen_US
dc.creatorChung, SHen_US
dc.creatorMa, HLen_US
dc.date.accessioned2019-09-24T00:53:20Z-
dc.date.available2019-09-24T00:53:20Z-
dc.identifier.urihttp://hdl.handle.net/10397/81398-
dc.descriptionTransportation Science and Logistics Conference 2020 (TSL 2020), Washington DC, USA, 27-29 May 2020 (cancelled)en_US
dc.description.sponsorshipDepartment of Industrial and Systems Engineeringen_US
dc.language.isoenen_US
dc.publisherINFORMSen_US
dc.rightsPosted with permission of the author.en_US
dc.titleControlling air traffic congestion by predicting flight departure delays and duration : integrating machine learning sampling techniques and deep learning approachesen_US
dc.typeConference Paperen_US
dc.identifier.spage1en_US
dc.identifier.epage5en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationProceedings of the TSL Second Triennial Conference, 2020, 128, p.1-5.en_US
dcterms.issued2020-
dc.relation.conferenceTransportation Science and Logistics Conference (TSL)en_US
dc.identifier.artn128en_US
dc.description.validate202006 bcmaen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumbera0436-n01en_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCopyright retained by authoren_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
Khan_Controlling_air_traffic.pdf203.22 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Show simple item record

Page views

116
Last Week
1
Last month
Citations as of Apr 14, 2025

Downloads

162
Citations as of Apr 14, 2025

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.