Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/81398
DC Field | Value | Language |
---|---|---|
dc.creator | Khan, WA | en_US |
dc.creator | Chung, SH | en_US |
dc.creator | Ma, HL | en_US |
dc.date.accessioned | 2019-09-24T00:53:20Z | - |
dc.date.available | 2019-09-24T00:53:20Z | - |
dc.identifier.uri | http://hdl.handle.net/10397/81398 | - |
dc.description | Transportation Science and Logistics Conference 2020 (TSL 2020), Washington DC, USA, 27-29 May 2020 (cancelled) | en_US |
dc.description.sponsorship | Department of Industrial and Systems Engineering | en_US |
dc.language.iso | en | en_US |
dc.publisher | INFORMS | en_US |
dc.rights | Posted with permission of the author. | en_US |
dc.title | Controlling air traffic congestion by predicting flight departure delays and duration : integrating machine learning sampling techniques and deep learning approaches | en_US |
dc.type | Conference Paper | en_US |
dc.identifier.spage | 1 | en_US |
dc.identifier.epage | 5 | en_US |
dcterms.accessRights | open access | en_US |
dcterms.bibliographicCitation | Proceedings of the TSL Second Triennial Conference, 2020, 128, p.1-5. | en_US |
dcterms.issued | 2020 | - |
dc.relation.conference | Transportation Science and Logistics Conference (TSL) | en_US |
dc.identifier.artn | 128 | en_US |
dc.description.validate | 202006 bcma | en_US |
dc.description.oa | Version of Record | en_US |
dc.identifier.FolderNumber | a0436-n01 | en_US |
dc.description.pubStatus | Published | en_US |
dc.description.oaCategory | Copyright retained by author | en_US |
Appears in Collections: | Conference Paper |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Khan_Controlling_air_traffic.pdf | 203.22 kB | Adobe PDF | View/Open |
Page views
116
Last Week
1
1
Last month
Citations as of Apr 14, 2025
Downloads
162
Citations as of Apr 14, 2025

Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.