Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/81335
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineering-
dc.creatorSolberg, K-
dc.creatorGuan, S-
dc.creatorRazavi, SMJ-
dc.creatorWelo, T-
dc.creatorChan, KC-
dc.creatorBerto, F-
dc.date.accessioned2019-09-20T00:55:06Z-
dc.date.available2019-09-20T00:55:06Z-
dc.identifier.issn8756-758X-
dc.identifier.urihttp://hdl.handle.net/10397/81335-
dc.language.isoenen_US
dc.publisherWiley-Blackwellen_US
dc.rightsThis is an open access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en_US
dc.rights©2019 The Authors Fatigue & Fracture of Engineering Materials & Structures Published by John Wiley & Sons Ltd.en_US
dc.rightsThe following publication Solberg, K., Guan, S., Razavi, S. M. J., Welo, T., Chan, K. C., & Berto, F. (2019). Fatigue of additively manufactured 316L stainless steel: the influence of porosity and surface roughness. Fatigue & Fracture of Engineering Materials & Structures, 42(9), 2043-2052 is available at https://dx.doi.org/10.1111/ffe.13077en_US
dc.subject316L stainless steelen_US
dc.subjectFatigueen_US
dc.subjectPorosityen_US
dc.subjectSelective laser meltingen_US
dc.subjectSurface roughnessen_US
dc.titleFatigue of additively manufactured 316L stainless steel : the influence of porosity and surface roughnessen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage2043-
dc.identifier.epage2052-
dc.identifier.volume42-
dc.identifier.issue9-
dc.identifier.doi10.1111/ffe.13077-
dcterms.abstractThe fatigue behaviour of additively manufactured (AM) 316L stainless steel is investigated with the main emphasis on internal porosity and surface roughness. A transition between two cases of failure are found: failure from defects in the surface region and failure from the internal defects. At low applied load level (and consequently a high number of cycles to failure), fatigue is initiating from defects in the surface region, while for high load levels, fatigue is initiating from internal defects. Porosities captured by X-ray computed tomography (XCT) are compared with the defects initiating fatigue cracks, obtained from fractography. The fatigue data are synthesised using stress intensity factor (SIF) of the internal and surface defects on the fracture surface.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationFatigue & fracture of engineering materials & structures, Sept. 2019, v. 42, no. 9, p. 2043-2052-
dcterms.isPartOfFatigue & fracture of engineering materials & structures-
dcterms.issued2019-
dc.identifier.isiWOS:000478162400001-
dc.identifier.scopus2-s2.0-85069823098-
dc.identifier.eissn1460-2695-
dc.description.validate201909 bcrc-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_Scopus/WOSen_US
dc.description.pubStatusPublisheden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Solberg_Fatigue_Additively_Manufactured.pdf4.19 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

179
Last Week
1
Last month
Citations as of Apr 21, 2024

Downloads

133
Citations as of Apr 21, 2024

SCOPUSTM   
Citations

107
Citations as of Apr 19, 2024

WEB OF SCIENCETM
Citations

98
Citations as of Apr 18, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.