Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/81301
Title: | Application of ANFIS and LSSVM strategies for estimating thermal conductivity enhancement of metal and metal oxide based nanofluids | Authors: | Razavi, R Sabaghmoghadam, A Bemani, A Baghban, A Chau, KW Salwana, E |
Issue Date: | 2019 | Source: | Engineering applications of computational fluid mechanics, 1 Jan. 2019, v. 13, no. 1, p. 560-578 | Abstract: | An extensive variety of chemical engineering processes include the transfer of heat energy. Since increasing the effective contact surface is known as one of the popular manners to improve the efficiency of heat transfer, the attention to the nanofluids has been attracted. Due to the difficulty and high cost of an experimental study, researchers have been attracted to fast computational methods. In this work, Adaptive neuro-fuzzy inference system and least square support vector machine algorithms have been applied as a comprehensive predictive tool to forecast the nanofluids thermal conductivity in terms of diameter, temperature, the thermal conductivity of the base fluid, the thermal conductivity of nanoparticle and volume fraction. To this end, a large and comprehensive experimental databank contains 1109 data points have been collected from reliable sources. The particle swarm optimization is utilized to reach the best structures of the proposed algorithms. A comprehensive statistical and graphical investigations are carried out to prove the accuracy and ability of proposed models. In addition, the comparisons outputs indicate that the least square support vector machine algorithm has the best performance among the existing correlations and Adaptive neuro-fuzzy inference system algorithms for forecasting thermal conductivity of different nanofluids. | Keywords: | Nanofluid Thermal conductivity Least square support vector machine algorithm Adaptive neuro-fuzzy inference system |
Publisher: | Taylor & Francis | Journal: | Engineering applications of computational fluid mechanics | ISSN: | 1994-2060 | EISSN: | 1997-003X | DOI: | 10.1080/19942060.2019.1620130 | Rights: | © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The following publication Razieh Razavi, Aida Sabaghmoghadam, Amin Bemani, Alireza Baghban, Kwok-wing Chau & Ely Salwana (2019) Application of ANFIS and LSSVM strategies for estimating thermal conductivity enhancement of metal and metal oxide based nanofluids, Engineering Applications of Computational Fluid Mechanics, 13:1, 560-578 is available at https://dx.doi.org/10.1080/19942060.2019.1620130 |
Appears in Collections: | Journal/Magazine Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Razavi_Application_ANFIS_LSSVM.pdf | 5.83 MB | Adobe PDF | View/Open |
Page views
84
Last Week
0
0
Last month
Citations as of May 28, 2023
Downloads
89
Citations as of May 28, 2023
SCOPUSTM
Citations
48
Citations as of May 25, 2023
WEB OF SCIENCETM
Citations
48
Citations as of May 25, 2023

Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.