Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/80929
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Rehabilitation Sciences-
dc.creatorXu, Hen_US
dc.creatorChen, Ben_US
dc.creatorTan, Pen_US
dc.creatorSun, Qen_US
dc.creatorMaroto-Valer, MMen_US
dc.creatorNi, Men_US
dc.date.accessioned2019-06-27T07:32:29Z-
dc.date.available2019-06-27T07:32:29Z-
dc.identifier.issn0306-2619en_US
dc.identifier.urihttp://hdl.handle.net/10397/80929-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.rights© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).en_US
dc.rightsThe following publication Xu, H., Chen, B., Tan, P., Sun, Q., Maroto-Valer, M. M., & Ni, M. (2019). Modelling of a hybrid system for on-site power generation from solar fuels. Applied Energy, 240, 709-718 is available at https://doi.org/10.1016/j.apenergy.2019.02.091en_US
dc.subjectHybrid systemen_US
dc.subjectNumerical simulationen_US
dc.subjectPhotoreactoren_US
dc.subjectSolar energyen_US
dc.subjectSolid oxide fuel cellen_US
dc.titleModelling of a hybrid system for on-site power generation from solar fuelsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage709en_US
dc.identifier.epage718en_US
dc.identifier.volume240en_US
dc.identifier.doi10.1016/j.apenergy.2019.02.091en_US
dcterms.abstractSolar fuels, as clean and sustainable fuels, are promising energy sources for future low carbon economy. In this work, a hybrid system consisting of a photoreactor and a solid oxide fuel cell (SOFC) is proposed for on-site power generation from solar fuels. 2D numerical models are developed for the hybrid system for the first time by coupling the mass/momentum transport with the charge (electrons/ions) transport and the electrochemical/chemical reactions. A peak power density of 2162 W m −2 is achieved from the SOFC at 1073 K operating temperature. However, a rapid drop of the power density is observed at large current density due to the fuel starvation in the anode. The inlet CO 2 mole fraction is found to significantly affect the output power density of the SOFC and CO 2 utilization rate of the photo reactor, where a CO 2 mole fraction of 40% is the optimum value for the studied cases. The results offer insightful information on energy conversion from solar to fuel to power and provide new options for sustainable energy conversion devices.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationApplied energy, 2019, v. 240, p. 709-718en_US
dcterms.isPartOfApplied energyen_US
dcterms.issued2019-
dc.identifier.scopus2-s2.0-85061933026-
dc.identifier.eissn1872-9118en_US
dc.description.validate201906 bcma-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_IR/PIRA-
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Xu_Modelling_hybrid_system.pdf2.1 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

163
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

117
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

13
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

9
Citations as of Dec 19, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.