Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/80763
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Civil and Environmental Engineering-
dc.creatorQasem, SN-
dc.creatorSamadianfard, S-
dc.creatorNahand, HS-
dc.creatorMosavi, A-
dc.creatorShamshirband, S-
dc.creatorChau, KW-
dc.date.accessioned2019-05-28T01:09:12Z-
dc.date.available2019-05-28T01:09:12Z-
dc.identifier.issn2073-4441en_US
dc.identifier.urihttp://hdl.handle.net/10397/80763-
dc.language.isoenen_US
dc.publisherMolecular Diversity Preservation International (MDPI)en_US
dc.rights© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Qasem, S.N.; Samadianfard, S.; Sadri Nahand, H.; Mosavi, A.; Shamshirband, S.; Chau, K.-W. Estimating Daily Dew Point Temperature Using Machine Learning Algorithms. Water 2019, 11, 582, 13 pages is available at https://dx.doi.org/10.3390/w11030582en_US
dc.subjectDew point temperatureen_US
dc.subjectPredictionen_US
dc.subjectMachine learningen_US
dc.subjectMeteorological parametersen_US
dc.subjectStatistical analysisen_US
dc.subjectBig dataen_US
dc.subjectGene expression programming (GEP)en_US
dc.subjectDeep learningen_US
dc.subjectForecastingen_US
dc.subjectM5 model treeen_US
dc.subjectSupport vector regression (SVR)en_US
dc.subjectHydrological modelen_US
dc.subjectHydroinformaticsen_US
dc.subjectHydrologyen_US
dc.titleEstimating daily dew point temperature using machine learning algorithmsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1en_US
dc.identifier.epage13en_US
dc.identifier.volume11en_US
dc.identifier.issue3en_US
dc.identifier.doi10.3390/w11030582en_US
dcterms.abstractIn the current study, the ability of three data-driven methods of Gene Expression Programming (GEP), M5 model tree (M5), and Support Vector Regression (SVR) were investigated in order to model and estimate the dew point temperature (DPT) at Tabriz station, Iran. For this purpose, meteorological parameters of daily average temperature (T), relative humidity (RH), actual vapor pressure (V-p), wind speed (W), and sunshine hours (S) were obtained from the meteorological organization of East Azerbaijan province, Iran for the period 1998 to 2016. Following this, the methods mentioned above were examined by defining 15 different input combinations of meteorological parameters. Additionally, root mean square error (RMSE) and the coefficient of determination (R-2) were implemented to analyze the accuracy of the proposed methods. The results showed that the GEP-10 method, using three input parameters of T, RH, and S, with RMSE of 0.96 degrees, the SVR-5, using two input parameters of T and RH, with RMSE of 0.44, and M5-15, using five input parameters of T, RH, V-p, W, and S with RMSE of 0.37 present better performance in the estimation of the DPT. As a conclusion, the M5-15 is recommended as the most precise model in the estimation of DPT in comparison with other considered models. As a conclusion, the obtained results proved the high capability of proposed M5 models in DPT estimation.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationWater, 20 Mar. 2019, v. 11, no. 3, 582, p. 1-13-
dcterms.isPartOfWater-
dcterms.issued2019-
dc.identifier.isiWOS:000464546700001-
dc.identifier.scopus2-s2.0-85065021146-
dc.identifier.artn582en_US
dc.description.validate201905 bcrc-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Qasem_Dew_Temperature_Machine.pdf2.46 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

191
Last Week
1
Last month
Citations as of Jun 22, 2025

Downloads

114
Citations as of Jun 22, 2025

SCOPUSTM   
Citations

90
Citations as of Jul 3, 2025

WEB OF SCIENCETM
Citations

77
Citations as of Jun 5, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.