Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/80112
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineering-
dc.creatorJiang, H-
dc.creatorKwong, CK-
dc.creatorLaw, MC-
dc.creatorIp, WH-
dc.date.accessioned2018-12-21T07:14:57Z-
dc.date.available2018-12-21T07:14:57Z-
dc.identifier.issn1877-0509-
dc.identifier.urihttp://hdl.handle.net/10397/80112-
dc.description17th International Conference in Knowledge Based and Intelligent Information and Engineering Systems, KES 2013, Kitakyushu, 9-11 September 2013en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/3.0/).en_US
dc.rightsSelection and peer-review under responsibility of KES International.en_US
dc.rightsThe following publication Jiang, H., Kwong, C. K., Law, M. C., & Ip, W. H. (2013). Development of customer satisfaction models for affective design using rough set and ANFIS approaches. Procedia computer science, 2013, 22, 104-112 is available at https://dx.doi.org/10.1016/j.procs.2013.09.086en_US
dc.subjectAffective designen_US
dc.subjectANFISen_US
dc.subjectCustomer satisfactionen_US
dc.subjectParticle swarm optimizationen_US
dc.subjectRough set theoryen_US
dc.titleDevelopment of customer satisfaction models for affective design using rough set and ANFIS approachesen_US
dc.typeConference Paperen_US
dc.identifier.spage104-
dc.identifier.epage112-
dc.identifier.volume22-
dc.identifier.doi10.1016/j.procs.2013.09.086-
dcterms.abstractRough set (RS)- and particle swarm optimization (PSO)- based adaptive neuro-fuzzy inference system (ANFIS) approaches are proposed to generate customer satisfaction models in affective design that address fuzzy and nonlinear relationships between affective responses and design attributes. The RS theory is adopted to reduce the number of fuzzy rules generated using ANFIS and simplify the structure of ANFIS. PSO is employed to determine the parameter settings of an ANFIS from which customer satisfaction models with better modeling accuracy can be generated. A case study of mobile phone affective design is used to illustrate the proposed approaches.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationProcedia computer science, 2013, v. 22, p. 104-112-
dcterms.isPartOfProcedia computer science-
dcterms.issued2013-
dc.identifier.scopus2-s2.0-84896993765-
dc.relation.conferenceInternational Conference in Knowledge Based and Intelligent Information and Engineering Systems [KES]-
dc.description.validate201812 bcrc-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Conference Paper
Files in This Item:
File Description SizeFormat 
Jiang_Development_Customer_Satisfaction.pdf354.76 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

221
Last Week
7
Last month
Citations as of Nov 9, 2025

Downloads

128
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

9
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

8
Last Week
0
Last month
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.