Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/80088
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physics-
dc.creatorYang, Sen_US
dc.creatorHu, Yen_US
dc.creatorWang, Sen_US
dc.creatorGu, Hen_US
dc.creatorWang, Yen_US
dc.date.accessioned2018-12-21T07:14:53Z-
dc.date.available2018-12-21T07:14:53Z-
dc.identifier.issn1687-8108en_US
dc.identifier.urihttp://hdl.handle.net/10397/80088-
dc.language.isoenen_US
dc.publisherHindawi Publishing Corporationen_US
dc.rightsCopyright © 2013 Shulin Yang et al. This is an open access article distributed under the Creative Commons Attribution License (https://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en_US
dc.rightsThe following publication Yang, S., Hu, Y., Wang, S., Gu, H., & Wang, Y. (2013). Phase transition and optical properties for ultrathin KNbO3 nanowires. Advances in Condensed Matter Physics, 2013, 567420, 1-5 is available at https://dx.doi.org/10.1155/2013/567420en_US
dc.titlePhase transition and optical properties for ultrathin KNbO3 nanowiresen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1en_US
dc.identifier.epage5en_US
dc.identifier.volume2013en_US
dc.identifier.doi10.1155/2013/567420en_US
dcterms.abstractFascicular KNbO3 nanowires with tetragonal perovskite structures and ultrasmall diameters are synthesized by hydrothermal route at about 150°C for 24 hours. The concentrations of medium alkalinity have influenced phase structures and the final morphologies of the products significantly by modifying the conditions in process. The as-prepared KNbO3 nanowires exhibit three phase transitions at about 343, 454.7, and 623 K as the temperature increases from 250 to 700 K. The band gap is about 3.78 eV for KNbO3 nanowires. Photoluminescence study at room temperature reveals two visible light emission bands peaking at 551 and 597 nm, respectively, which may be due to the oxygen vacancies, site niobium (occupy the location of Nb), and antisite niobium (occupy the location of K) in KNbO3 nanowires.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationAdvances in condensed matter physics, 2013, v. 2013, 567420, p. 1-5en_US
dcterms.isPartOfAdvances in condensed matter physicsen_US
dcterms.issued2013-
dc.identifier.scopus2-s2.0-84890047831-
dc.identifier.eissn1687-8124en_US
dc.identifier.artn567420en_US
dc.description.validate201812 bcrc-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_IR/PIRA-
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Yang_Phase_Transition_Optical.pdf2.38 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

146
Last Week
1
Last month
Citations as of Apr 14, 2025

Downloads

149
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

7
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

4
Last Week
0
Last month
Citations as of Dec 19, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.