Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/80084
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineering-
dc.creatorMa, L-
dc.creatorHu, K-
dc.creatorZhu, Y-
dc.creatorNiu B-
dc.creatorChen, H-
dc.creatorHe, M-
dc.date.accessioned2018-12-21T07:14:53Z-
dc.date.available2018-12-21T07:14:53Z-
dc.identifier.issn1110-757X-
dc.identifier.urihttp://hdl.handle.net/10397/80084-
dc.language.isoenen_US
dc.publisherHindawi Publishing Corporationen_US
dc.rightsCopyright © 2014 Lianbo Ma et al. This is an open access article distributed under the Creative Commons Attribution License (https://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en_US
dc.rightsThe following publication Ma, L., Hu, K., Zhu, Y., Niu, B., Chen, H., & He, M. (2014). Discrete and continuous optimization based on hierarchical artificial bee colony optimizer. Journal of Applied Mathematics, 2014, 402616, 1-20 is available at https://dx.doi.org/10.1155/2014/402616en_US
dc.titleDiscrete and continuous optimization based on hierarchical artificial bee colony optimizeren_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1-
dc.identifier.volume2014-
dc.identifier.doi10.1155/2014/402616-
dcterms.abstractThis paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization (HABC), to tackle complex high-dimensional problems. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operator is applied to enhance the global search ability between species. Experiments are conducted on a set of 20 continuous and discrete benchmark problems. The experimental results demonstrate remarkable performance of the HABC algorithm when compared with other six evolutionary algorithms.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of applied mathematics, 2014, v. 2014, 402616, p. 1-20-
dcterms.isPartOfJournal of applied mathematics-
dcterms.issued2014-
dc.identifier.scopus2-s2.0-84897566452-
dc.identifier.eissn1687-0042-
dc.identifier.artn402616-
dc.description.validate201812 bcrc-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Ma_Discrete_Continuous_Optimization.pdf3.52 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

231
Last Week
2
Last month
Citations as of Nov 9, 2025

Downloads

134
Citations as of Nov 9, 2025

SCOPUSTM   
Citations

20
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

12
Last Week
0
Last month
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.