Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/78816
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineeringen_US
dc.creatorLi, Ren_US
dc.creatorLiu, XJen_US
dc.creatorWang, Hen_US
dc.creatorWu, Yen_US
dc.creatorChan, KCen_US
dc.creatorLu, ZPen_US
dc.date.accessioned2018-10-26T01:21:09Z-
dc.date.available2018-10-26T01:21:09Z-
dc.identifier.issn0264-1275en_US
dc.identifier.urihttp://hdl.handle.net/10397/78816-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2018 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Li, R., Liu, X. J., Wang, H., Wu, Y., Chan, K. C., & Lu, Z. P. (2018). Flexible glassy grid structure for rapid degradation of azo dye. Materials & Design, 155, 346-351 is available at https://doi.org/10.1016/j.matdes.2018.06.022.en_US
dc.subjectMetallic glassen_US
dc.subjectGrid structureen_US
dc.subjectWastewater treatmenten_US
dc.subjectDegradationen_US
dc.titleFlexible glassy grid structure for rapid degradation of azo dyeen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage346en_US
dc.identifier.epage351en_US
dc.identifier.volume155en_US
dc.identifier.doi10.1016/j.matdes.2018.06.022en_US
dcterms.abstractDegradation of organic contaminants in industrial wastewaters has become a worldwide conundrum and attracted extensive attention. In this paper, we report a flexible grid structure with uniform mesh fabricated by plain weaving melt-extracted Fe80B20 glassy micro-wires, and the produced wire grid with a dosage of 0.3 g/L can completely degrade 0.2 g/L DB 15 azo dyes for <30 min at room temperature. The calculated degradation efficiency of the sample is approximately 4.3 min, 2.1 times faster than that of the Fe80B20 glassy ribbons and 28 times for commercial pure Fe powders. The enhanced degradation performance is primarily attributed to the uniform grid structure with high internal surface area in addition to the intrinsic activity of metallic glasses. Our findings not only provide high-performance candidate for degrading and filtering wastewater with organic pollutant simultaneously, but also promote the practical applications of metallic glasses as functional materials.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationMaterials and design, 5 Oct. 2018, v. 155, p. 346-351en_US
dcterms.isPartOfMaterials and designen_US
dcterms.issued2018-10-05-
dc.identifier.isiWOS:000440314300034-
dc.identifier.eissn1873-4197en_US
dc.description.validate201810 bcrcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberISE-0575-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; International S&T Cooperation Program of China; Program for Changjiang Scholars and Innovative Research Team in University of China; Projects of SKL-AMM-USTBen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6847009-
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Chan_Flexible_Glassy_Grid.pdfPre-Published version1.58 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

116
Last Week
1
Last month
Citations as of Mar 24, 2024

Downloads

40
Citations as of Mar 24, 2024

SCOPUSTM   
Citations

26
Citations as of Mar 29, 2024

WEB OF SCIENCETM
Citations

24
Last Week
0
Last month
Citations as of Mar 28, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.