Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/78742
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorInstitute of Textiles and Clothingen_US
dc.creatorXiao, BQen_US
dc.creatorFan, Jen_US
dc.creatorJiang, GPen_US
dc.creatorChen, LXen_US
dc.date.accessioned2018-10-12T06:10:34Z-
dc.date.available2018-10-12T06:10:34Z-
dc.identifier.issn1000-3290en_US
dc.identifier.urihttp://hdl.handle.net/10397/78742-
dc.language.isozhen_US
dc.publisher科學出版社en_US
dc.rights© 2012 中国学术期刊电子杂志出版社。本内容的使用仅限于教育、科研之目的。||© 2012 China Academic Journal Electronic Publishing House. It is to be used strictly for educational and research purposes.en_US
dc.subjectConvection heat transferen_US
dc.subjectFractalen_US
dc.subjectNanofluidsen_US
dc.titleAnalysis of convection heat transfer mechanism in nanofluidsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume61en_US
dc.identifier.issue15en_US
dcterms.abstractEnergy shortage and environment pollution are the major and large problems presently encountered by human all over the world. It is an effective way to save energy and reduce emission of polluted gas by using the nanofluids technology. There has been not a widely recognized theory which can explain flow and heat transfer of nanofluids until now. So the mechanism of flow and heat transfer of nanofluids is not clear. Considering the Brownian motion of nanoparticles in nanofluids, a mechanism model for heat transfer by heat convection is proposed based on the fractal distribution of nanoparticle. No additional/new empirical constant is introduced. The proposed fractal model for heat flux of nanofluids is found to be a function of temperature, average nanoparticle size, concentration, fractal dimension of nanoparticles, fractal dimension of active cavities on boiling surfaces and basic fluid property in pool boiling. The model predictions are compared with the existing experimental data, and fair agreement between the model predictions and experimental data is found for the cases of different nanoparticle concentrations and different average nanoparticle diameters. The analytical model can reveal the physical principles for convection heat transfer in nanofluids.en_US
dcterms.abstract考虑在纳米流体中纳米颗粒做布朗运动引起的对流换热,基于纳米颗粒在纳米流体中遵循分形分布,本文得到纳米流体对流换热的机理模型.本解析模型没有增加新的经验常数,从该模型发现纳米流体池沸腾热流密度是温度、纳米颗粒的平均直径、纳米颗粒的浓度、纳米颗粒的分形维数、沸腾表面活化穴的分形维数、基本液体的物理特性的函数.对不同的纳米颗粒浓度和不同的纳米颗粒平均直径与不同的实验数据进行了比较,模型预测的结果与实验结果相吻合.所得的解析模型可以更深刻地揭示纳米流体对流换热的物理机理.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitation物理學報 (Acta physica Sinica), 2012, v. 61, no. 15, 154401en_US
dcterms.isPartOf物理學報 (Acta physica Sinica)en_US
dcterms.issued2012-
dc.identifier.scopus2-s2.0-84864559301-
dc.identifier.artn154401en_US
dc.description.validate201810 bcmaen_US
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_IR/PIRA-
dc.description.pubStatusPublisheden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Xiao_Analysis_convection_heat.pdf528.96 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

222
Last Week
3
Last month
Citations as of Apr 14, 2024

Downloads

78
Citations as of Apr 14, 2024

SCOPUSTM   
Citations

16
Citations as of Apr 19, 2024

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.