Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/77968
DC Field | Value | Language |
---|---|---|
dc.contributor | Department of Applied Mathematics | en_US |
dc.creator | Lu, Z | en_US |
dc.creator | Chen, X | en_US |
dc.date.accessioned | 2018-08-28T01:35:57Z | - |
dc.date.available | 2018-08-28T01:35:57Z | - |
dc.identifier.issn | 0364-765X | en_US |
dc.identifier.uri | http://hdl.handle.net/10397/77968 | - |
dc.language.iso | en | en_US |
dc.publisher | Institute for Operations Research and the Management Sciences | en_US |
dc.rights | Copyright: ©2017 INFORMS | en_US |
dc.rights | This is the accepted manuscript of the following article: Lu, Z., & Chen, X. (2018). Generalized conjugate gradient methods for ℓ 1 regularized convex quadratic programming with finite convergence. Mathematics of Operations Research, 43(1), 275-303, which has been published in final form at https://doi.org/10.1287/moor.2017.0865 | en_US |
dc.subject | Conjugate gradient method | en_US |
dc.subject | Convex quadratic programming | en_US |
dc.subject | Finite convergence | en_US |
dc.subject | Sparse optimization | en_US |
dc.subject | Nℓ1-regularization | en_US |
dc.title | Generalized conjugate gradient methods for ℓ1 regularized convex quadratic programming with finite convergence | en_US |
dc.type | Journal/Magazine Article | en_US |
dc.identifier.spage | 275 | en_US |
dc.identifier.epage | 303 | en_US |
dc.identifier.volume | 43 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.doi | 10.1287/moor.2017.0865 | en_US |
dcterms.abstract | The conjugate gradient (CG) method is an efficient iterative method for solving large-scale strongly convex quadratic programming (QP). In this paper, we propose some generalized CG (GCG) methods for solving the ℓ1 -regularized (possibly not strongly) convex QP that terminate at an optimal solution in a finite number of iterations. At each iteration, our methods first identify a face of an orthant and then either perform an exact line search along the direction of the negative projected minimum-norm subgradient of the objective function or execute a CG subroutine that conducts a sequence of CG iterations until a CG iterate crosses the boundary of this face or an approximate minimizer of over this face or a subface is found. We determine which type of step should be taken by comparing the magnitude of some components of the minimum-norm subgradient of the objective function to that of its rest components. Our analysis on finite convergence of these methods makes use of an error bound result and some key properties of the aforementioned exact line search and the CG subroutine. We also show that the proposed methods are capable of finding an approximate solution of the problem by allowing some inexactness on the execution of the CG subroutine. The overall arithmetic operation cost of our GCG methods for finding an ϵ-optimal solution depends on e in O(log(1/ϵ)), which is superior to the accelerated proximal gradient method (Beck and Teboulle [Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1):183-202], Nesterov [Nesterov Yu (2013) Gradient methods for minimizing composite functions. Math. Program. 140(1):125-161]) that depends on e in O(1/√ϵ). In addition, our GCG methods can be extended straightforwardly to solve box-constrained convex QP with finite convergence. Numerical results demonstrate that our methods are very favorable for solving ill-conditioned problems. | en_US |
dcterms.accessRights | open access | en_US |
dcterms.bibliographicCitation | Mathematics of operations research, Feb. 2018, v. 43, no. 1, p. 275-303 | en_US |
dcterms.isPartOf | Mathematics of operations research | en_US |
dcterms.issued | 2018-02 | - |
dc.identifier.isi | WOS:000425886400013 | - |
dc.identifier.scopus | 2-s2.0-85043310230 | - |
dc.identifier.eissn | 1526-5471 | en_US |
dc.identifier.rosgroupid | 2017000114 | - |
dc.description.ros | 2017-2018 > Academic research: refereed > Publication in refereed journal | en_US |
dc.description.validate | 201808 bcrc | en_US |
dc.description.oa | Accepted Manuscript | en_US |
dc.identifier.FolderNumber | AMA-0407 | - |
dc.description.fundingSource | RGC | en_US |
dc.description.pubStatus | Published | en_US |
dc.identifier.OPUS | 6826289 | - |
dc.description.oaCategory | Green (AAM) | en_US |
Appears in Collections: | Journal/Magazine Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Chen_Generalized_Conjugate_Gradient.pdf | Pre-Published version | 1.25 MB | Adobe PDF | View/Open |
Page views
158
Last Week
1
1
Last month
Citations as of Apr 14, 2025
Downloads
73
Citations as of Apr 14, 2025
SCOPUSTM
Citations
7
Last Week
0
0
Last month
Citations as of May 8, 2025
WEB OF SCIENCETM
Citations
7
Last Week
0
0
Last month
Citations as of May 8, 2025

Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.