Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/77625
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorZhu, Xen_US
dc.creatorXia, Xen_US
dc.creatorZhang, Pen_US
dc.date.accessioned2018-08-28T01:33:39Z-
dc.date.available2018-08-28T01:33:39Z-
dc.identifier.issn0010-2180en_US
dc.identifier.urihttp://hdl.handle.net/10397/77625-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.en_US
dc.rights© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Zhu, X., Xia, X., & Zhang, P. (2018). Near-field flow stability of buoyant methane/air inverse diffusion flames. Combustion and Flame, 191, 66-75 is available at https://doi.org/10.1016/j.combustflame.2018.01.009.en_US
dc.subjectBuoyancyen_US
dc.subjectInstabilityen_US
dc.subjectInverse diffusion flameen_US
dc.subjectNear-fielden_US
dc.subjectShear flowen_US
dc.titleNear-field flow stability of buoyant methane/air inverse diffusion flamesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage66en_US
dc.identifier.epage75en_US
dc.identifier.volume191en_US
dc.identifier.doi10.1016/j.combustflame.2018.01.009en_US
dcterms.abstractExperiment and simulation were performed to investigate buoyant methane/air inverse diffusion flames, with emphasis on the near-field flow dynamics under non-reacting and reacting conditions. In the non-reacting flow, the initial shear flow and the buoyancy effect induce opposite-direction vortices, which interact with each other and cause flow instability similar to the mechanism forming the von Karman vortex street. The instability is greatly intensified at around unity Richardson number, when the two vortices are comparably strong. In the reacting flows, the density gradient is reversed due to chemical heat release and so is the buoyancy-induced vortex that has the same direction with the vortex of the initial shear flow. As a result, the buoyancy-induced vorticity generation would facilitate the growth of the initial shear layer, thus the near-field flow remains stable. However, the growing shear flow would eventually lead to the development of the Kelvin–Helmholtz instability in the far field.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationCombustion and flame, May 2018, v. 191, p. 66-75en_US
dcterms.isPartOfCombustion and flameen_US
dcterms.issued2018-05-
dc.identifier.isiWOS:000430527600007-
dc.identifier.scopus2-s2.0-85041673223-
dc.identifier.rosgroupid2017000989-
dc.description.ros2017-2018 > Academic research: refereed > Publication in refereed journalen_US
dc.description.validate201808 bcrcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberME-0656-
dc.description.fundingSourceRGCen_US
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; National Natural Science Foundation of Jiangsu Province; Aeronautical Science Fund; Fundamental Research Funds for the Central Universitiesen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS14480207-
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Zhu_Near-Field_Flow_Stability.pdfPre-Published version2.97 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

116
Last Week
0
Last month
Citations as of May 26, 2024

Downloads

51
Citations as of May 26, 2024

SCOPUSTM   
Citations

8
Last Week
0
Last month
Citations as of May 30, 2024

WEB OF SCIENCETM
Citations

8
Last Week
0
Last month
Citations as of May 30, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.