Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/77583
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Land Surveying and Geo-Informatics-
dc.creatorWang, Y-
dc.creatorQin, K-
dc.creatorChen, Y-
dc.creatorZhao, P-
dc.date.accessioned2018-08-28T01:33:22Z-
dc.date.available2018-08-28T01:33:22Z-
dc.identifier.urihttp://hdl.handle.net/10397/77583-
dc.language.isoenen_US
dc.publisherMolecular Diversity Preservation International (MDPI)en_US
dc.rights© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).en_US
dc.rightsThe following publication Wang, Y., Qin, K., Chen, Y., & Zhao, P. (2018). Detecting anomalous trajectories and behavior patterns using hierarchical clustering from Taxi GPS Data. Isprs International Journal of Geo-Information, 7(1), (Suppl. ), 25, - is available at https://dx.doi.org/10.3390/ijgi7010025en_US
dc.subjectAnomalous behavior patternen_US
dc.subjectEdit distanceen_US
dc.subjectHierarchical clusteringen_US
dc.subjectTrajectory anomaliesen_US
dc.subjectTrajectory clusteringen_US
dc.titleDetecting anomalous trajectories and behavior patterns using hierarchical clustering from Taxi GPS Dataen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume7-
dc.identifier.issue1-
dc.identifier.doi10.3390/ijgi7010025-
dcterms.abstractAnomalous taxi trajectories are those chosen by a small number of drivers that are different from the regular choices of other drivers. These anomalous driving trajectories provide us an opportunity to extract driver or passenger behaviors and monitor adverse urban traffic events. Because various trajectory clustering methods have previously proven to be an effective means to analyze similarities and anomalies within taxi GPS trajectory data, we focus on the problem of detecting anomalous taxi trajectories, and we develop our trajectory clustering method based on the edit distance and hierarchical clustering. To achieve this objective, first, we obtain all the taxi trajectories crossing the same source-destination pairs from taxi trajectories and take these trajectories as clustering objects. Second, an edit distance algorithm is modified to measure the similarity of the trajectories. Then, we distinguish regular trajectories and anomalous trajectories by applying adaptive hierarchical clustering based on an optimal number of clusters. Moreover, we further analyze these anomalous trajectories and discover four anomalous behavior patterns to speculate on the cause of an anomaly based on statistical indicators of time and length. The experimental results show that the proposed method can effectively detect anomalous trajectories and can be used to infer clearly fraudulent driving routes and the occurrence of adverse traffic events.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationISPRS international journal of geo-information, Jan. 2018, v. 7, no. 1, 25, p. 1-20-
dcterms.isPartOfISPRS international journal of geo-information-
dcterms.issued2018-
dc.identifier.isiWOS:000424123000024-
dc.identifier.scopus2-s2.0-85041596268-
dc.identifier.eissn2220-9964-
dc.identifier.artn25-
dc.description.validate201808 bcrc-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryCCen_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Wang_Anomalous_Trajectories_Behavior.pdf8.35 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

210
Last Week
1
Last month
Citations as of Oct 6, 2025

Downloads

89
Citations as of Oct 6, 2025

SCOPUSTM   
Citations

102
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

82
Last Week
0
Last month
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.