Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/77176
DC Field | Value | Language |
---|---|---|
dc.contributor | Department of Applied Mathematics | en_US |
dc.creator | Jin, B | en_US |
dc.creator | Li, B | en_US |
dc.creator | Zhou, Z | en_US |
dc.date.accessioned | 2018-07-30T08:26:43Z | - |
dc.date.available | 2018-07-30T08:26:43Z | - |
dc.identifier.issn | 1064-8275 | en_US |
dc.identifier.uri | http://hdl.handle.net/10397/77176 | - |
dc.language.iso | en | en_US |
dc.publisher | Society for Industrial and Applied Mathematics | en_US |
dc.rights | © 2017, Society for Industrial and Applied Mathematics. | en_US |
dc.rights | Posted with permission of the publisher. | en_US |
dc.rights | The following publication Jin, B., Li, B., & Zhou, Z. (2017). Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM Journal on Scientific Computing, 39(6), A3129-A3152 is available at https://dx.doi.org/ 10.1137/17M1118816 | en_US |
dc.subject | Backward differentiation formulas | en_US |
dc.subject | Convolution quadrature | en_US |
dc.subject | Error estimates | en_US |
dc.subject | Fractional evolution equation | en_US |
dc.subject | Incompatible data | en_US |
dc.subject | Initial correction | en_US |
dc.subject | Nonsmooth | en_US |
dc.title | Correction of high-order BDF convolution quadrature for fractional evolution equations | en_US |
dc.type | Journal/Magazine Article | en_US |
dc.identifier.spage | A3129 | en_US |
dc.identifier.epage | A3152 | en_US |
dc.identifier.volume | 39 | en_US |
dc.identifier.issue | 6 | en_US |
dc.identifier.doi | 10.1137/17M1118816 | en_US |
dcterms.abstract | We develop proper correction formulas at the starting k − 1 steps to restore the desired kth-order convergence rate of the k-step BDF convolution quadrature for discretizing evolution equations involving a fractional-order derivative in time. The desired kth-order convergence rate can be achieved even if the source term is not compatible with the initial data, which is allowed to be nonsmooth. We provide complete error estimates for the subdiffusion case α ∈ (0, 1) and sketch the proof for the diffusion-wave case α ∈ (1, 2). Extensive numerical examples are provided to illustrate the effectiveness of the proposed scheme. | en_US |
dcterms.accessRights | open access | en_US |
dcterms.bibliographicCitation | SIAM journal on scientific computing, 2017, v. 39, no. 6, p. A3129-A3152 | en_US |
dcterms.isPartOf | SIAM journal on scientific computing | en_US |
dcterms.issued | 2017 | - |
dc.identifier.scopus | 2-s2.0-85039982079 | - |
dc.identifier.eissn | 1095-7197 | en_US |
dc.identifier.rosgroupid | 2017001714 | - |
dc.description.ros | 2017-2018 > Academic research: refereed > Publication in refereed journal | en_US |
dc.description.validate | 201807 bcrc | en_US |
dc.description.oa | Version of Record | en_US |
dc.identifier.FolderNumber | a0602-n03 | - |
dc.identifier.SubFormID | 548 | - |
dc.description.fundingSource | RGC | en_US |
dc.description.fundingText | 15300817 | en_US |
dc.description.pubStatus | Published | en_US |
Appears in Collections: | Journal/Magazine Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
17m1118816.pdf | 532.11 kB | Adobe PDF | View/Open |
Page views
66
Last Week
0
0
Last month
Citations as of Sep 24, 2023
Downloads
5
Citations as of Sep 24, 2023
SCOPUSTM
Citations
117
Last Week
0
0
Last month
Citations as of Sep 21, 2023
WEB OF SCIENCETM
Citations
113
Last Week
0
0
Last month
Citations as of Sep 21, 2023

Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.