Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/76056
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorWang, Zen_US
dc.creatorLin, Yen_US
dc.creatorChen, Ren_US
dc.creatorLiao, Qen_US
dc.creatorZhu, Xen_US
dc.creatorAn, Len_US
dc.creatorHe, Xen_US
dc.creatorZhang, Wen_US
dc.date.accessioned2018-05-10T02:55:16Z-
dc.date.available2018-05-10T02:55:16Z-
dc.identifier.issn0013-4686en_US
dc.identifier.urihttp://hdl.handle.net/10397/76056-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.rights© 2017 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Wang, Z., Lin, Y., Chen, R., Liao, Q., Zhu, X., An, L., ... & Zhang, W. (2017). A micro membrane-less photoelectrochemical cell for hydrogen and electricity generation in the presence of methanol. Electrochimica Acta, 245, 549-560 is available at https://doi.org/10.1016/j.electacta.2017.05.182.en_US
dc.subjectPECen_US
dc.subjectHydrogen productionen_US
dc.subjectElectricity productionen_US
dc.subjectFill factoren_US
dc.subjectSTHen_US
dc.titleA micro membrane-less photoelectrochemical cell for hydrogen and electricity generation in the presence of methanolen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage549en_US
dc.identifier.epage560en_US
dc.identifier.volume245en_US
dc.identifier.doi10.1016/j.electacta.2017.05.182en_US
dcterms.abstractIn present study, a micro membrane-less photoelectrochemical cell (mu ML-PEC) is developed for simultaneous hydrogen and electricity productions in the presence of methanol, in which the photoanode of a TiO2 film is consisted of a compact layer at the bottom and a porous layer on the top. The experimental results indicate the PEC miniaturization, and the membrane elimination, and the addition of a compact layer can enhance the mass, electron and photon transfer, which eventually boosts the performance. The performance of the developed mML-PEC is also evaluated under various operating conditions, including the light intensity, methanol and electrolyte concentrations and flow rate. It is shown that the maximum power density increases and the fill factor (FF) and solar-to-hydrogen conversion efficiency (STH) decrease with increasing the light intensity. For the electrolyte concentration, the maximum power density and STH and FF all increases with increasing the electrolyte concentration. Once the electrolyte is high enough, its effect become insignificant. Besides, the increase of the methanol concentration and the decrease of the flow rate are beneficial for the improvement in the performance. The obtained results reveal that the mML-PEC developed in this work shows the promising potential for simultaneously producing electricity and hydrogen in the presence of methanol.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationElectrochimica acta, 10 Aug. 2017, v. 245, p. 549-560en_US
dcterms.isPartOfElectrochimica actaen_US
dcterms.issued2017-08-10-
dc.identifier.isiWOS:000406762700062-
dc.identifier.scopus2-s2.0-85020270205-
dc.identifier.eissn1873-3859en_US
dc.identifier.rosgroupid2017000919-
dc.description.ros2017-2018 > Academic research: refereed > Publication in refereed journalen_US
dc.description.validate201805 bcrcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberME-0785-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; the National High Technology Research and Development Program of China (863 Program) 2015AA043503)en_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6751357-
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
ME-0785_An_Micro_Membrane-Less_Photoelectrochemical.pdfPre-Published version2.71 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

186
Last Week
0
Last month
Citations as of Apr 21, 2024

Downloads

73
Citations as of Apr 21, 2024

SCOPUSTM   
Citations

15
Last Week
0
Last month
Citations as of Apr 19, 2024

WEB OF SCIENCETM
Citations

15
Last Week
0
Last month
Citations as of Apr 18, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.