Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/75726
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Applied Mathematics | en_US |
| dc.creator | Zhao, XQ | en_US |
| dc.creator | Wu, YS | en_US |
| dc.creator | Yin, GS | en_US |
| dc.date.accessioned | 2018-05-10T02:54:28Z | - |
| dc.date.available | 2018-05-10T02:54:28Z | - |
| dc.identifier.issn | 1350-7265 | en_US |
| dc.identifier.uri | http://hdl.handle.net/10397/75726 | - |
| dc.language.iso | en | en_US |
| dc.publisher | International Statistical Institute | en_US |
| dc.rights | © 2017 ISI/BS | en_US |
| dc.rights | The following publication Xingqiu Zhao, Yuanshan Wu, Guosheng Yin "Sieve maximum likelihood estimation for a general class of accelerated hazards models with bundled parameters," Bernoulli, Bernoulli 23(4B), 3385-3411, (November 2017) is available at https://doi.org/10.3150/16-BEJ850. | en_US |
| dc.subject | Accelerated failure time model | en_US |
| dc.subject | B-spline | en_US |
| dc.subject | Proportional hazards model | en_US |
| dc.subject | Semiparametric efficiency bound | en_US |
| dc.subject | Sieve maximum likelihood estimator | en_US |
| dc.subject | Survival data | en_US |
| dc.title | Sieve maximum likelihood estimation for a general class of accelerated hazards models with bundled parameters | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.spage | 3385 | en_US |
| dc.identifier.epage | 3411 | en_US |
| dc.identifier.volume | 23 | en_US |
| dc.identifier.issue | 4B | en_US |
| dc.identifier.doi | 10.3150/16-BEJ850 | en_US |
| dcterms.abstract | In semiparametric hazard regression, nonparametric components may involve unknown regression parameters. Such intertwining effects make model estimation and inference much more difficult than the case in which the parametric and nonparametric components can be separated out. We study the sieve maximum likelihood estimation for a general class of hazard regression models, which include the proportional hazards model, the accelerated failure time model, and the accelerated hazards model. Coupled with the cubic B-spline, we propose semiparametric efficient estimators for the parameters that are bundled inside the non parametric component. We overcome the challenges due to intertwining effects of the bundled parameters, and establish the consistency and asymptotic normality properties of the estimators. We carry out simulation studies to examine the finite-sample properties of the proposed method, and demonstrate its efficiency gain over the conventional estimating equation approach. For illustration, we apply our proposed method to a study of bone marrow transplantation for patients with acute leukemia. | en_US |
| dcterms.accessRights | open access | en_US |
| dcterms.bibliographicCitation | Bernoulli, 2017, v. 23, no. 4B, p. 3385-3411 | en_US |
| dcterms.isPartOf | Bernoulli | en_US |
| dcterms.issued | 2017 | - |
| dc.identifier.isi | WOS:000403032000015 | - |
| dc.identifier.eissn | 1573-9759 | en_US |
| dc.identifier.rosgroupid | 2017000686 | - |
| dc.description.ros | 2017-2018 > Academic research: refereed > Publication in refereed journal | en_US |
| dc.description.validate | 201805 bcrc | en_US |
| dc.description.oa | Version of Record | en_US |
| dc.identifier.FolderNumber | AMA-0459 | - |
| dc.description.fundingSource | RGC | en_US |
| dc.description.fundingSource | Others | en_US |
| dc.description.fundingText | The Hong Kong Polytechnic University; the National Natural Science Foundation of China | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.identifier.OPUS | 6746993 | - |
| dc.description.oaCategory | VoR allowed | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 16-BEJ850.pdf | 311.29 kB | Adobe PDF | View/Open |
Page views
157
Last Week
0
0
Last month
Citations as of Apr 14, 2025
Downloads
33
Citations as of Apr 14, 2025
SCOPUSTM
Citations
5
Last Week
0
0
Last month
Citations as of Jul 11, 2024
WEB OF SCIENCETM
Citations
14
Last Week
0
0
Last month
Citations as of Dec 18, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



