Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/75613
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematicsen_US
dc.creatorLi, BYen_US
dc.creatorLiu, Jen_US
dc.creatorXiao, MQen_US
dc.date.accessioned2018-05-10T02:54:12Z-
dc.date.available2018-05-10T02:54:12Z-
dc.identifier.issn0377-0427en_US
dc.identifier.urihttp://hdl.handle.net/10397/75613-
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.rights© 2017 Elsevier B.V. All rights reserved.en_US
dc.rights© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.rightsThe following publication Li, B., Liu, J., & Xiao, M. (2017). A new multigrid method for unconstrained parabolic optimal control problems. Journal of Computational and Applied Mathematics, 326, 358-373 is available at https://doi.org/10.1016/j.cam.2017.06.008.en_US
dc.subjectParabolic optimal controlen_US
dc.subjectLeapfrog schemeen_US
dc.subjectFinite differenceen_US
dc.subjectMultigrid methoden_US
dc.titleA new multigrid method for unconstrained parabolic optimal control problemsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage358en_US
dc.identifier.epage373en_US
dc.identifier.volume326en_US
dc.identifier.doi10.1016/j.cam.2017.06.008en_US
dcterms.abstractA second-order leapfrog finite difference scheme in time is proposed and developed for solving the first-order necessary optimality system of the distributed parabolic optimal control problems. Different from available approaches, the proposed leapfrog scheme for the two-point boundary optimality system is shown to be unconditionally stable and provides a second-order accuracy, though the classical leapfrog scheme usually is unstable. Moreover the proposed leapfrog scheme provides a feasible structure that leads to an effective implementation of a fast solver under the multigrid framework. A detailed mathematical proof for the stability of the proposed scheme is provided in terms of a new norm that is more suitable and stronger to characterize the convergence than the L-2 norm often used in literature. Numerical experiments show that the proposed scheme significantly outperforms the widely used second-order backward time differentiation approach and the resultant fast solver demonstrates a mesh-independent convergence as well as a linear time complexity.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of computational and applied mathematics, 15 Dec. 2017, v. 326, p. 358-373en_US
dcterms.isPartOfJournal of computational and applied mathematicsen_US
dcterms.issued2017-12-15-
dc.identifier.isiWOS:000405977300026-
dc.identifier.eissn1879-1778en_US
dc.identifier.rosgroupid2017001708-
dc.description.ros2017-2018 > Academic research: refereed > Publication in refereed journalen_US
dc.description.validate201805 bcrcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberAMA-0441-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNSFCen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6755513-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Li_New_Multigrid_Method.pdfPre-Published version725.01 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

149
Last Week
0
Last month
Citations as of Apr 14, 2025

Downloads

36
Citations as of Apr 14, 2025

SCOPUSTM   
Citations

12
Citations as of Jun 21, 2024

WEB OF SCIENCETM
Citations

14
Last Week
0
Last month
Citations as of Jun 5, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.