Please use this identifier to cite or link to this item:
PIRA download icon_1.1View/Download Full Text
Title: Corpus-based automatic extraction and analysis of Mandarin alphabetic words
Other Title: 基于语料库的汉语字母词自动抽取与分析
Authors: Huang, CR 
Liu, H
Issue Date: 2017
Source: 云南师范大学学报. 哲学社会科学版 (Journal of Yunnan Teachers University. Philosophy and social science section), 2017, no. 3, p. 10-21
Abstract: 本文为汉语字母词研究提出新视角。首先,我们实现了基于语料库的汉语字母词自动抽取和计量分析。其次,我们在理论上澄清了汉语字母词中的字母并非拼音字母(letter),而是书写字母(alphabet)。同时从音韵、构词与书写系统理论出发,进一步分析了汉语字母词对现有语言学理论的挑战及字母词分析对语言本体研究可能具有的重大贡献。基于对组字字母K的分析,我们主张组字字母的语言行为与汉字类似,而与拼音字母有很大的差距。最后,本文强调字母词的研究是语言科技对语言生活影响的一个重大课题。
This paper introduces a new perspective on the study of Mandarin alphabetic words( MAW). We first introduce the automatic extraction and quantitative analysis of Mandarin alphabetic words based on a large corpus. Second,we clarify the use of the term "alphabetic words"rather than "letter words",as all Chinese words written in Pinyin would be letter words. We further explicate the challenges and potential contributions to linguistic theories posed by an in-depth account of the phonology,morphology and writing system of Mandarin alphabetic words. Third,with a detailed analysis of the alphabet K in Mandarin alphabetic words,we suggest that the linguistic behavior of alphabet in Mandarin alphabetic words is similar to Chinese characters but different from letters. Finally,it is stressed that the study of Mandarin alphabetic words is a non-trivial subject on the influence of language life by language technology.
Keywords: Mandarin alphabetic word
Corpus linguistics
Quantitative linguistics
Language technology
Publisher: 中国学术期刊(光盘版)电子杂志社
Journal: 云南师范大学学报. 哲学社会科学版 (Journal of Yunnan Teachers University. Philosophy and social science section) 
ISSN: 1000-5110
Rights: © 2017 中国学术期刊电子杂志出版社。本内容的使用仅限于教育、科研之目的。
© 2017 China Academic Journal Electronic Publishing House. It is to be used strictly for educational and research purposes.
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Huang_Corpus-based_Automatic_Extraction.pdf1.69 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

Last Week
Last month
Citations as of May 28, 2023


Citations as of May 28, 2023

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.