Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/70754
Title: | Impact of land surface heterogeneity on urban heat island circulation and sea-land breeze circulation in Hong Kong | Authors: | Wang, Y Di Sabatino, S Martilli, A Li, Y Wong, MS Gutierrez, E Chan, PW |
Issue Date: | 27-Apr-2017 | Source: | Journal of geophysical research. Atmospheres, 27 Apr. 2017, v. 122, no. 8, p. 4332-4352 | Abstract: | Hong Kong is one of the most high-rise and highly compact cities in the world. The urban land surface is highly heterogeneous, which creates low-level convergence zones in urban areas, particularly the Kowloon Peninsula. The low-level convergence zone is due to the combined effect of urban heat island circulation (UHIC) and sea-land breeze circulation (SLBC) under weak northeasterly synoptic flow. To study the impacts of anthropogenic fluxes and built-up areas on the local circulation, the Weather Research and Forecasting (WRF) mesoscale model is combined with the multilayer urban canopy building effect parameterization/building energy model (BEP/BEM) parameterization to produce a 3day simulation of an air pollution episode in Hong Kong in September 2012. To better represent the city land surface features, building information is assimilated in the central part of the Kowloon Peninsula. The WRF-BEP-BEM model captures the 2m temperature distribution and local wind rotation reasonably well but overestimates the 10m wind speed with a mean bias error of 0.70m/s. A dome-shaped feature with a high level of moisture is captured in the convergence zones due to intensified UHIC and inflowing SLBC. The anthropogenic heat increases the air temperature by around 0.3 degrees C up to 250m, which in turn modifies the SLBC. A new drag coefficient based on lambda(P), plan area per unit ground area, is tested. Besides the basic physical characteristics captured by the WRF-BEP-BEM model, the stagnation of wind in the lower level convergence zone is better captured by this approach than by the traditional constant value coefficient. | Keywords: | WRF UCM modeling system Urban heat island circulation Sea-land breeze circulation Hong Kong Air pollution |
Publisher: | Wiley-Blackwell | Journal: | Journal of geophysical research. Atmospheres | ISSN: | 2169-897X | EISSN: | 2169-8996 | DOI: | 10.1002/2017JD026702 | Rights: | © 2017. American Geophysical Union. All Rights Reserved. |
Appears in Collections: | Journal/Magazine Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Wong_Impact_Land_Surface.pdf | 3.28 MB | Adobe PDF | View/Open |
Page views
52
Last Week
0
0
Last month
Citations as of Sep 24, 2023
Downloads
2
Citations as of Sep 24, 2023
SCOPUSTM
Citations
37
Citations as of Sep 28, 2023
WEB OF SCIENCETM
Citations
36
Last Week
0
0
Last month
Citations as of Sep 28, 2023

Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.