Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/70454
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Land Surveying and Geo-Informaticsen_US
dc.creatorWang, QMen_US
dc.creatorZhang, YHen_US
dc.creatorOnojeghuo, AOen_US
dc.creatorZhu, XLen_US
dc.creatorAtkinson, PMen_US
dc.date.accessioned2017-12-28T06:16:55Z-
dc.date.available2017-12-28T06:16:55Z-
dc.identifier.issn1939-1404en_US
dc.identifier.urihttp://hdl.handle.net/10397/70454-
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.rights© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_US
dc.rightsThe following publication Q. Wang, Y. Zhang, A. O. Onojeghuo, X. Zhu and P. M. Atkinson, "Enhancing Spatio-Temporal Fusion of MODIS and Landsat Data by Incorporating 250 m MODIS Data," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 10, no. 9, pp. 4116-4123, Sept. 2017 is available at https://dx.doi.org/10.1109/JSTARS.2017.2701643.en_US
dc.subjectDownscalingen_US
dc.subjectGeostatisticsen_US
dc.subjectImage fusionen_US
dc.subjectLandsaten_US
dc.subjectMODISen_US
dc.subjectSpatio-temporal fusionen_US
dc.titleEnhancing spatio-temporal fusion of MODIS and landsat data by incorporating 250 m MODIS dataen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage4116en_US
dc.identifier.epage4123en_US
dc.identifier.volume10en_US
dc.identifier.issue9en_US
dc.identifier.doi10.1109/JSTARS.2017.2701643en_US
dcterms.abstractSpatio-temporal fusion of MODIS and Landsat data aims to produce new data that have simultaneously the Landsat spatial resolution and MODIS temporal resolution. It is an ill-posed problem involving large uncertainty, especially for reproduction of abrupt changes and heterogeneous landscapes. In this paper, we proposed to incorporate the freely available 250 m MODIS images into spatio-temporal fusion to increase prediction accuracy. The 250 m MODIS bands 1 and 2 are fused with 500 m MODIS bands 3-7 using the advanced area-to-point regression kriging approach. Based on a standard spatio-temporal fusion approach, the interim 250 m fused MODIS data are then downscaled to 30 m with the aid of the available 30 m Landsat data on temporally close days. The 250 m data can provide more information for the abrupt changes and heterogeneous landscapes than the original 500 m MODIS data, thus increasing the accuracy of spatio-temporal fusion predictions. The effectiveness of the proposed scheme was demonstrated using two datasets.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIEEE journal of selected topics in applied earth observations and remote sensing, 2017, v. 10, no. 9, special issue, p. 4116-4123en_US
dcterms.isPartOfIEEE journal of selected topics in applied earth observations and remote sensingen_US
dcterms.issued2017-09-
dc.identifier.isiWOS:000412626400026-
dc.identifier.scopus2-s2.0-85020102052-
dc.identifier.ros2016003802-
dc.identifier.eissn2151-1535en_US
dc.identifier.rosgroupid2016003733-
dc.description.ros2016-2017 > Academic research: refereed > Publication in refereed journalen_US
dc.description.validatebcrcen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumbera1566-
dc.identifier.SubFormID45451-
dc.description.fundingSourceSelf-fundeden_US
dc.description.pubStatusPublisheden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Wang_MODIS_Landsat_250m.pdfPre-Published version1.4 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

48
Last Week
1
Last month
Citations as of Nov 20, 2022

Downloads

7
Citations as of Nov 20, 2022

SCOPUSTM   
Citations

31
Last Week
0
Last month
Citations as of Nov 24, 2022

WEB OF SCIENCETM
Citations

26
Last Week
0
Last month
Citations as of Nov 24, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.