Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/703
Title: | Practical design and evaluation of a 1 kW PFC power supply based on reduced redundant power processing principle | Authors: | Cheung, MKH Chow, MHL Tse, CKM |
Issue Date: | Feb-2008 | Source: | IEEE transactions on industrial electronics, Feb. 2008, v. 55, no. 2, p. 665-673 | Abstract: | Using the reduced redundant power processing (R²P²) principle, a single-phase power-factor correction (PFC) power supply can achieve a higher overall efficiency as a result of the use of a noncascading structure that involves less repeated processing of the input power. This paper investigates a single-phase noncascading PFC power supply based on the R²P² principle. The circuit employs a current-fed full-bridge converter as the PFC preregulator, and a buck-boost converter as the voltage regulator. This paper addresses the design of this noncascading PFC power supply and in particular the relationships between the gained efficiency, the transient response and the size of the energy storage. Experimental results obtained from a 1 kW laboratory prototype are presented. | Keywords: | Buck-boost converter Continuous conduction mode (CCM) Current-fed full-bridge converter Noncascading structure Power factor correction (PFC) |
Publisher: | Institute of Electrical and Electronics Engineers | Journal: | IEEE transactions on industrial electronics | ISSN: | 0278-0046 | EISSN: | 1557-9948 | DOI: | 10.1109/TIE.2007.909078 | Rights: | © 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holders. |
Appears in Collections: | Journal/Magazine Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
processing-principle_08.pdf | 801.88 kB | Adobe PDF | View/Open |
Page views
83
Last Week
1
1
Last month
Citations as of Jun 4, 2023
Downloads
634
Citations as of Jun 4, 2023
SCOPUSTM
Citations
48
Last Week
0
0
Last month
0
0
Citations as of Jun 2, 2023
WEB OF SCIENCETM
Citations
40
Last Week
0
0
Last month
0
0
Citations as of Jun 1, 2023

Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.