Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/7029
DC Field | Value | Language |
---|---|---|
dc.contributor | Department of Applied Mathematics | - |
dc.creator | Xu, GQ | - |
dc.creator | Yung, SP | - |
dc.creator | Li, LK | - |
dc.date.accessioned | 2014-12-11T08:29:19Z | - |
dc.date.available | 2014-12-11T08:29:19Z | - |
dc.identifier.issn | 1292-8119 | - |
dc.identifier.uri | http://hdl.handle.net/10397/7029 | - |
dc.language.iso | en | en_US |
dc.publisher | EDP Sciences | en_US |
dc.rights | © EDP Sciences, SMAI 2006 | en_US |
dc.rights | The original publication is available at www.esaim-cocv.org | en_US |
dc.rights | The following article "Gen Qi Xu, Siu Pang Yung and Leong Kwan Li (2006). Stabilization of wave systems with input delay in the boundary control. ESAIM: Control, Optimisation and Calculus of Variations, 12, pp 770-785. doi:10.1051/cocv:2006021." is available at http://www.esaim-cocv.org/action/displayAbstract?fromPage=online&aid=8133878 | en_US |
dc.subject | Feedback control | en_US |
dc.subject | Spectrum analysis | en_US |
dc.subject | Stabilization | en_US |
dc.subject | Vectors | en_US |
dc.subject | Velocity control | en_US |
dc.subject | Waves | en_US |
dc.title | Stabilization of wave systems with input delay in the boundary control | en_US |
dc.type | Journal/Magazine Article | en_US |
dc.identifier.spage | 770 | - |
dc.identifier.epage | 785 | - |
dc.identifier.volume | 12 | - |
dc.identifier.issue | 4 | - |
dc.identifier.doi | 10.1051/cocv:2006021 | - |
dcterms.abstract | In the present paper, we consider a wave system that is fixed at one end and a boundary control input possessing a partial time delay of weight (1 - μ) is applied over the other end. Using a simple boundary velocity feedback law, we show that the closed loop system generates a C₀ group of linear operators. After a spectral analysis, we show that the closed loop system is a Riesz one, that is, there is a sequence of eigenvectors and generalized eigenvectors that forms a Riesz basis for the state Hubert space. Furthermore, we show that when the weight μ > 1/2, for any time delay, we can choose a suitable feedback gain so that the closed loop system is exponentially stable. When μ = 1/2 we show that the system is at most asymptotically stable. When μ < 1/2, the system is always unstable. | - |
dcterms.accessRights | open access | en_US |
dcterms.bibliographicCitation | ESAIM. Control, optimisation and calculus of variations, Oct. 2006, v. 12, no. 4, p. 770-785 | - |
dcterms.isPartOf | ESAIM. Control, optimisation and calculus of variations | - |
dcterms.issued | 2006-10 | - |
dc.identifier.isi | WOS:000241191600007 | - |
dc.identifier.scopus | 2-s2.0-33749664537 | - |
dc.identifier.eissn | 1262-3377 | - |
dc.identifier.rosgroupid | r32994 | - |
dc.description.ros | 2006-2007 > Academic research: refereed > Publication in refereed journal | - |
dc.description.oa | Version of Record | en_US |
dc.identifier.FolderNumber | OA_IR/PIRA | en_US |
dc.description.pubStatus | Published | en_US |
dc.description.oaCategory | VoR allowed | en_US |
Appears in Collections: | Journal/Magazine Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Xu_Wave_Boundary_Control.pdf | 216.55 kB | Adobe PDF | View/Open |
Page views
216
Last Week
1
1
Last month
Citations as of Apr 14, 2025
Downloads
172
Citations as of Apr 14, 2025
SCOPUSTM
Citations
277
Last Week
0
0
Last month
1
1
Citations as of May 8, 2025
WEB OF SCIENCETM
Citations
243
Last Week
0
0
Last month
0
0
Citations as of May 8, 2025

Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.