Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/7015
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorBian, W-
dc.creatorChen, X-
dc.date.accessioned2014-12-11T08:26:18Z-
dc.date.available2014-12-11T08:26:18Z-
dc.identifier.issn1052-6234-
dc.identifier.urihttp://hdl.handle.net/10397/7015-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2013 Society for Industrial and Applied Mathematicsen_US
dc.subjectNonsmooth nonconvex optimizationen_US
dc.subjectSmoothing approximationen_US
dc.subjectQuadratic regularizationen_US
dc.subjectConvergenceen_US
dc.subjectWorst-case complexityen_US
dc.subjectStationary pointen_US
dc.titleWorst-case complexity of smoothing quadratic regularization methods for non-lipschitzian optimizationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1718-
dc.identifier.epage1741-
dc.identifier.volume23-
dc.identifier.issue3-
dc.identifier.doi10.1137/120864908-
dcterms.abstractIn this paper, we propose a smoothing quadratic regularization (SQR) algorithm for solving a class of nonsmooth nonconvex, perhaps even non-Lipschitzian minimization problems, which has wide applications in statistics and sparse reconstruction. The proposed SQR algorithm is a first order method. At each iteration, the SQR algorithm solves a strongly convex quadratic minimization problem with a diagonal Hessian matrix, which has a simple closed-form solution that is inexpensive to calculate. We show that the worst-case complexity of reaching an ϵ scaled stationary point is $O(ϵ⁻²). Moreover, if the objective function is locally Lipschitz continuous, the SQR algorithm with a slightly modified updating scheme for the smoothing parameter and iterate can obtain an ϵ Clarke stationary point in at most $O(ϵ⁻³) iterations.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM Journal on optimization, 2013, v. 23, no. 3, p. 1718–1741-
dcterms.isPartOfSIAM Journal on optimization-
dcterms.issued2013-
dc.identifier.isiWOS:000325094000015-
dc.identifier.scopus2-s2.0-84886302151-
dc.identifier.eissn1095-7189-
dc.identifier.rosgroupidr72398-
dc.description.ros2013-2014 > Academic research: refereed > Publication in refereed journal-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Bian_Worst-case_Complexity_quadratic.pdf579.7 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

256
Last Week
27
Last month
Citations as of Nov 10, 2025

Downloads

310
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

41
Last Week
1
Last month
0
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

40
Last Week
0
Last month
1
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.