Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/7014
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Applied Mathematics | - |
| dc.creator | Chen, X | - |
| dc.creator | Niu, L | - |
| dc.creator | Yuan, Y | - |
| dc.date.accessioned | 2014-12-11T08:26:56Z | - |
| dc.date.available | 2014-12-11T08:26:56Z | - |
| dc.identifier.issn | 1052-6234 | - |
| dc.identifier.uri | http://hdl.handle.net/10397/7014 | - |
| dc.language.iso | en | en_US |
| dc.publisher | Society for Industrial and Applied Mathematics | en_US |
| dc.rights | © 2013 Society for Industrial and Applied Mathematics | en_US |
| dc.subject | Nonsmooth nonconvex optimization | en_US |
| dc.subject | Smoothing methods | en_US |
| dc.subject | Convergence | en_US |
| dc.subject | Regularized optimization | en_US |
| dc.subject | Penalty function | en_US |
| dc.subject | Non-Lipschitz | en_US |
| dc.subject | Trust region Newton method | en_US |
| dc.title | Optimality conditions and a smoothing trust region newton method for nonlipschitz optimization | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.spage | 1528 | - |
| dc.identifier.epage | 1552 | - |
| dc.identifier.volume | 23 | - |
| dc.identifier.issue | 3 | - |
| dc.identifier.doi | 10.1137/120871390 | - |
| dcterms.abstract | Regularized minimization problems with nonconvex, nonsmooth, perhaps non-Lipschitz penalty functions have attracted considerable attention in recent years, owing to their wide applications in image restoration, signal reconstruction, and variable selection. In this paper, we derive affine-scaled second order necessary and sufficient conditions for local minimizers of such minimization problems. Moreover, we propose a global convergent smoothing trust region Newton method which can find a point satisfying the affine-scaled second order necessary optimality condition from any starting point. Numerical examples are given to demonstrate the effectiveness of the smoothing trust region Newton method. | - |
| dcterms.accessRights | open access | en_US |
| dcterms.bibliographicCitation | SIAM Journal on optimization, 2013, v. 23, no. 3, p. 1528–1552 | - |
| dcterms.isPartOf | SIAM Journal on optimization | - |
| dcterms.issued | 2013 | - |
| dc.identifier.isi | WOS:000325094000007 | - |
| dc.identifier.scopus | 2-s2.0-84886296616 | - |
| dc.identifier.eissn | 1095-7189 | - |
| dc.identifier.rosgroupid | r69606 | - |
| dc.description.ros | 2013-2014 > Academic research: refereed > Publication in refereed journal | - |
| dc.description.oa | Version of Record | en_US |
| dc.identifier.FolderNumber | OA_IR/PIRA | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.description.oaCategory | VoR allowed | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Chen_Optimality_Smoothing_Trust.pdf | 313.61 kB | Adobe PDF | View/Open |
Page views
293
Last Week
1
1
Last month
Citations as of Nov 10, 2025
Downloads
539
Citations as of Nov 10, 2025
SCOPUSTM
Citations
74
Last Week
0
0
Last month
1
1
Citations as of Dec 19, 2025
WEB OF SCIENCETM
Citations
71
Last Week
0
0
Last month
2
2
Citations as of Dec 18, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



