Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/6949
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineering-
dc.creatorChan, CY-
dc.creatorXue, F-
dc.creatorIp, WH-
dc.creatorCheung, CF-
dc.date.accessioned2014-12-11T08:29:17Z-
dc.date.available2014-12-11T08:29:17Z-
dc.identifier.isbn978-3-642-34412-1 (print)-
dc.identifier.isbn978-3-642-34413-8 (online)-
dc.identifier.urihttp://hdl.handle.net/10397/6949-
dc.language.isoenen_US
dc.publisherSpringer Berlin / Heidelbergen_US
dc.rights© Springer-Verlag Berlin Heidelberg 2012. The final publication is available on http://link.springer.com.en_US
dc.subjectOptimizationen_US
dc.subjectShellfishen_US
dc.titleA hyper-heuristic inspired by pearl huntingen_US
dc.typeBook Chapteren_US
dc.identifier.spage349-
dc.identifier.epage353-
dc.identifier.doi10.1007/978-3-642-34413-8_26-
dcterms.abstractPearl hunting is a traditional way of diving to retrieve pearl from pearl oysters or to hunt some other sea creatures. In some areas, hunters need to dive and search seafloor repeatedly at several meters depth for pearl oysters. In a search perspective, pearl hunting consists of repeated diversification (to surface and change target area) and intensification (to dive and find pearl oysters). A Pearl Hunter (PHunter) hyper-heuristic is inspired by the pearl hunting, as shown in Fig. 1. Given a problem domain and some low-level heuristics (LLHs), PHunter can group, test, select and organize LLHs for the domain by imitating a rational diver.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationIn Y Hamadi & M Schoenauer (Eds.), Learning & intelligent optimization, p. 349-353. Berlin ; New York: Springer, 2012-
dcterms.issued2012-
dc.identifier.scopus2-s2.0-84867872173-
dc.relation.ispartofbookLearning & intelligent optimization-
dc.publisher.placeBerlin ; New Yorken_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Book Chapter
Files in This Item:
File Description SizeFormat 
Chan_a_hyper_heuristic.pdfPre-published version82.94 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

245
Last Week
0
Last month
Citations as of Dec 22, 2024

Downloads

246
Citations as of Dec 22, 2024

SCOPUSTM   
Citations

17
Last Week
0
Last month
0
Citations as of Dec 19, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.