Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/6721
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Industrial and Systems Engineering-
dc.creatorXue, F-
dc.creatorChan, CY-
dc.creatorIp, WH-
dc.creatorCheung, CF-
dc.date.accessioned2014-12-11T08:23:25Z-
dc.date.available2014-12-11T08:23:25Z-
dc.identifier.issn1385-9587 (print)-
dc.identifier.issn1573-7071 (online)-
dc.identifier.urihttp://hdl.handle.net/10397/6721-
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.rights© Springer Science+Business Media, LLC 2011en_US
dc.rightsThe published article is located at http://dx.doi.org/10.1007/s11066-011-9064-7. The final publication is available at link.springer.com.en_US
dc.subjectSupervised learningen_US
dc.subjectMetaheuristicsen_US
dc.subjectEuclidean traveling salesman problemen_US
dc.subjectClass association rulesen_US
dc.subjectLarge-scale optimizationen_US
dc.titleA learning-based variable assignment weighting scheme for heuristic and exact searching in Euclidean traveling salesman problemsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage183-
dc.identifier.epage207-
dc.identifier.volume12-
dc.identifier.issue3-
dc.identifier.doi10.1007/s11066-011-9064-7-
dcterms.abstractMany search algorithms have been successfully employed in combinatorial optimization in logistics practice. This paper presents an attempt to weight the variable assignments through supervised learning in subproblems. Heuristic and exact search methods can therefore test promising solutions first. The Euclidean Traveling Salesman Problem (ETSP) is employed as an example to demonstrate the presented method. Analysis shows that the rules can be approximately learned from the training samples from the subproblems and the near optimal tours. Experimental results on large-scale local search tests and small-scale branch-and-bound tests validate the effectiveness of the approach, especially when it is applied to industrial problems.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationNETNOMICS: Economic research and electronic networking, Oct. 2011, v. 12, no. 3, p. 183-207-
dcterms.isPartOfNETNOMICS: Economic research and electronic networking-
dcterms.issued2011-10-
dc.identifier.scopus2-s2.0-84868458804-
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.pubStatusPublisheden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
10netnomics.pdfPre-published version144.61 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

66
Last Week
0
Last month
Citations as of Jul 3, 2022

Downloads

143
Citations as of Jul 3, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.