Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/6668
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorCao, L-
dc.creatorZhang, L-
dc.creatorAllegretto, W-
dc.creatorLin, Y-
dc.date.accessioned2014-12-11T08:26:54Z-
dc.date.available2014-12-11T08:26:54Z-
dc.identifier.issn0036-1429 (print)-
dc.identifier.issn1095-7170 (online)-
dc.identifier.urihttp://hdl.handle.net/10397/6668-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2013 Society for Industrial and Applied Mathematicsen_US
dc.subjectSteklov eigenvalue problemen_US
dc.subjectMultiscale asymptotic expansionen_US
dc.subjectBoundary layer solutionen_US
dc.titleMultiscale asymptotic method for Steklov eigenvalue equations in composite mediaen_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationAuthor name used in this publication: Yanping Linen_US
dc.identifier.spage273-
dc.identifier.epage296-
dc.identifier.volume51-
dc.identifier.issue1-
dc.identifier.doi10.1137/110850876-
dcterms.abstractIn this paper we consider the multiscale analysis of a Steklov eigenvalue equation with rapidly oscillating coefficients arising from the modeling of a composite media with a periodic microstructure. There are mainly two new results in the present paper. First, we obtain the convergence rate with ε½ for the multiscale asymptotic expansions of the eigenvalues and the eigenfunctions of the Steklov eigenvalue problem. Second, the boundary layer solution is defined. Numerical simulations are then carried out to validate the above theoretical results.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on numerical analysis, 2013, v. 51, no. 1, p. 273–296-
dcterms.isPartOfSIAM journal on numerical analysis-
dcterms.issued2013-
dc.identifier.isiWOS:000315573700014-
dc.identifier.scopus2-s2.0-84876117627-
dc.identifier.rosgroupidr66235-
dc.description.ros2012-2013 > Academic research: refereed > Publication in refereed journal-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Cao_Multiscale_Asymptotic_Steklov.pdf748.24 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

199
Last Week
0
Last month
Citations as of Nov 10, 2025

Downloads

285
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

30
Last Week
1
Last month
0
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

29
Last Week
0
Last month
0
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.