Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/65740
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineeringen_US
dc.creatorCheng, Xen_US
dc.creatorChen, Ren_US
dc.creatorZhu, Xen_US
dc.creatorLiao, Qen_US
dc.creatorAn, Len_US
dc.creatorYe, Den_US
dc.creatorHe, Xen_US
dc.creatorLi, Sen_US
dc.creatorLi, Len_US
dc.date.accessioned2017-05-22T02:09:08Z-
dc.date.available2017-05-22T02:09:08Z-
dc.identifier.issn0360-5442en_US
dc.identifier.urihttp://hdl.handle.net/10397/65740-
dc.language.isoenen_US
dc.publisherPergamon Pressen_US
dc.rights© 2016 Elsevier Ltd. All rights reserved.en_US
dc.rights© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.en_US
dc.rightsThe following publication Cheng, X., Chen, R., Zhu, X., Liao, Q., An, L., Ye, D., ... & Li, L. (2017). An optofluidic planar microreactor for photocatalytic reduction of CO2 in alkaline environment. Energy, 120, 276-282 is available at https://doi.org/10.1016/j.energy.2016.11.081.en_US
dc.subjectMethanol concentrationen_US
dc.subjectMethanol yielden_US
dc.subjectOptofluidic planar microreactoren_US
dc.subjectPhotocatalytic reduction of CO2en_US
dc.titleAn optofluidic planar microreactor for photocatalytic reduction of CO2 in alkaline environmenten_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage276en_US
dc.identifier.epage282en_US
dc.identifier.volume120en_US
dc.identifier.doi10.1016/j.energy.2016.11.081en_US
dcterms.abstractThe development of highly efficient photocatalytic reactor is of importance to improve the performance of the photocatalytic reduction of CO2. In this work, an optofluidic planar microreactor is designed and fabricated for the photocatalytic reduction of CO2 with liquid water in alkaline environment. Such design offers several advantages of large surface-area-to-volume ratio, enhanced mass and photon transfer and more uniform light distribution. The performance of the developed planar microreactor is evaluated by measuring the methanol concentration to estimate the methanol yield under various operating parameters, including the liquid flow rate, light intensity, catalyst loading and NaOH concentration. It is shown that increasing the liquid flow rate firstly improves and then decreases the methanol concentration while the methanol yield continuously increases as the liquid flow rate increases. The increase of the light intensity and NaOH concentration increases both the methanol concentration and yield. Increasing the catalyst loading firstly improves the performance and then results in the reduction of the performance. A maximum methanol yield of 454.6 μmole/g-cat·h is achieved under a liquid flow rate of 50 μL/min, 0.2 M NaOH, and the light intensity of 8 mW/cm2.en_US
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationEnergy, 1 Feb. 2017, v. 120, p. 276-282en_US
dcterms.isPartOfEnergyen_US
dcterms.issued2017-02-01-
dc.identifier.scopus2-s2.0-85006757007-
dc.identifier.ros2016000951-
dc.identifier.eissn1873-6785en_US
dc.identifier.rosgroupid2016000936-
dc.description.ros2016-2017 > Academic research: refereed > Publication in refereed journalen_US
dc.description.validate201804_a bcmaen_US
dc.description.oaAccepted Manuscripten_US
dc.identifier.FolderNumberME-0858-
dc.description.fundingSourceOthersen_US
dc.description.fundingTextNational Natural Science Foundation of China; the Fundamental Research Funds for the Central Universitiesen_US
dc.description.pubStatusPublisheden_US
dc.identifier.OPUS6706383-
dc.description.oaCategoryGreen (AAM)en_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
ME-0858_An_Optofluidic_Planar_Microreactor.pdfPre-Published version1.01 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Final Accepted Manuscript
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

124
Last Week
1
Last month
Citations as of Oct 13, 2024

Downloads

84
Citations as of Oct 13, 2024

SCOPUSTM   
Citations

51
Last Week
0
Last month
Citations as of Oct 17, 2024

WEB OF SCIENCETM
Citations

48
Last Week
0
Last month
Citations as of Oct 10, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.