Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/62049
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorKwong, MK-
dc.creatorYuen, M-
dc.date.accessioned2016-12-19T08:58:21Z-
dc.date.available2016-12-19T08:58:21Z-
dc.identifier.issn0022-2488 (print)-
dc.identifier.issn1089-7658 (online)-
dc.identifier.urihttp://hdl.handle.net/10397/62049-
dc.language.isoenen_US
dc.publisherAmerican Institute of Physicsen_US
dc.rights© 2016 Author(s).en_US
dc.rightsThis article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in M. K. Kwong and M. Yuen, J. Math. Phys. 57, 083501 (2016) and may be found at https://dx.doi.org/10.1063/1.4960472en_US
dc.titleNew method for blowup of the Euler-poisson systemen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.volume57-
dc.identifier.issue8-
dc.identifier.doi10.1063/1.4960472-
dcterms.abstractIn this paper, we provide a new method for establishing the blowup of C2 solutionsfor the pressureless Euler-Poisson system with attractive forces for RN(N ≥ 2) with ρ(0, x0) > 0 and Ω0ij(x0) = 1/2[∂iuj(0, x0) - ∂jui(0, x0)]= 0 at somepoint x0 ∈ RN. By applying the generalized Hubble transformation div u(t, x0(t)) =Na˙(t )/a(t ) to a reduced Riccati differential inequality derived from the system, wesimplify the inequality into the Emden equation ä(t) = - Λ/a(t )N-1 , a(0) = 1, a˙(0) =div u(0, x0)/N . Known results on its blowup set allow us to easily obtain theblowup conditions of the Euler-Poisson system.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of mathematical physics, 2016, v. 57, no. 8, 83501, p. 083501-1-083501-5-
dcterms.isPartOfJournal of mathematical physics-
dcterms.issued2016-
dc.identifier.isiWOS:000383917300051-
dc.identifier.scopus2-s2.0-84981211774-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Kwong_Blowup_Euler-poisson_System.pdf756.56 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

320
Last Week
2
Last month
Citations as of Nov 10, 2025

Downloads

202
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

7
Last Week
0
Last month
0
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

7
Last Week
0
Last month
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.