Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/61867
DC Field | Value | Language |
---|---|---|
dc.contributor | Department of Applied Mathematics | en_US |
dc.creator | Li, D | en_US |
dc.creator | Qiao, Z | en_US |
dc.creator | Tang, T | en_US |
dc.date.accessioned | 2016-12-19T08:57:33Z | - |
dc.date.available | 2016-12-19T08:57:33Z | - |
dc.identifier.issn | 0036-1429 | en_US |
dc.identifier.uri | http://hdl.handle.net/10397/61867 | - |
dc.language.iso | en | en_US |
dc.publisher | Society for Industrial and Applied Mathematics | en_US |
dc.rights | © 2016 Society for Industrial and Applied Mathematics | en_US |
dc.rights | The following publication Li, D., Qiao, Z., & Tang, T. (2016). Characterizing the stabilization size for semi-implicit Fourier-spectral method to phase field equations. SIAM Journal on Numerical Analysis, 54(3), 1653-1681 is available at https://doi.org/10.1137/140993193 | en_US |
dc.subject | Cahn-Hilliard | en_US |
dc.subject | Energy stable | en_US |
dc.subject | Epitaxy | en_US |
dc.subject | Large time stepping | en_US |
dc.subject | Thin film | en_US |
dc.title | Characterizing the stabilization size for semi-implicit fourier-spectral method to phase field equations | en_US |
dc.type | Journal/Magazine Article | en_US |
dc.identifier.spage | 1653 | en_US |
dc.identifier.epage | 1681 | en_US |
dc.identifier.volume | 54 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.doi | 10.1137/140993193 | en_US |
dcterms.abstract | Recent results in the literature provide computational evidence that the stabilized semi-implicit time-stepping method can eficiently simulate phase field problems involving fourth order nonlinear diffusion, with typical examples like the Cahn-Hilliard equation and the thin film type equation. The up-to-date theoretical explanation of the numerical stability relies on the assumption that the derivative of the nonlinear potential function satisfies a Lipschitz-type condition, which in a rigorous sense, implies the boundedness of the numerical solution. In this work we remove the Lipschitz assumption on the nonlinearity and prove unconditional energy stability for the stabilized semi-implicit time-stepping methods. It is shown that the size of the stabilization term depends on the initial energy and the perturbation parameter but is independent of the time step. The corresponding error analysis is also established under minimal nonlinearity and regularity assumptions. | en_US |
dcterms.accessRights | open access | en_US |
dcterms.bibliographicCitation | SIAM journal on numerical analysis, 2016, v. 54, no. 3, p. 1653-1681 | en_US |
dcterms.isPartOf | SIAM journal on numerical analysis | en_US |
dcterms.issued | 2016 | - |
dc.identifier.scopus | 2-s2.0-84976866994 | - |
dc.identifier.rosgroupid | 2015001584 | - |
dc.description.ros | 2015-2016 > Academic research: refereed > Publication in refereed journal | en_US |
dc.description.validate | 202208 bcvc | en_US |
dc.description.oa | Version of Record | en_US |
dc.identifier.FolderNumber | AMA-0608 | - |
dc.description.fundingSource | RGC | en_US |
dc.description.fundingSource | Others | en_US |
dc.description.fundingText | NSFC | en_US |
dc.description.pubStatus | Published | en_US |
dc.identifier.OPUS | 6655602 | - |
dc.description.oaCategory | VoR allowed | en_US |
Appears in Collections: | Journal/Magazine Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
140993193.pdf | 441.41 kB | Adobe PDF | View/Open |
Page views
191
Last Week
0
0
Last month
Citations as of Apr 14, 2025
Downloads
39
Citations as of Apr 14, 2025
SCOPUSTM
Citations
133
Last Week
0
0
Last month
Citations as of May 8, 2025
WEB OF SCIENCETM
Citations
134
Last Week
0
0
Last month
Citations as of May 8, 2025

Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.