Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/6097
DC Field | Value | Language |
---|---|---|
dc.contributor | Department of Applied Mathematics | - |
dc.creator | An, C | - |
dc.creator | Chen, X | - |
dc.creator | Sloan, IH | - |
dc.creator | Womersley, RS | - |
dc.date.accessioned | 2014-12-11T08:24:52Z | - |
dc.date.available | 2014-12-11T08:24:52Z | - |
dc.identifier.issn | 0036-1429 (print) | - |
dc.identifier.issn | 1095-7170 (online) | - |
dc.identifier.uri | http://hdl.handle.net/10397/6097 | - |
dc.language.iso | en | en_US |
dc.publisher | Society for Industrial and Applied Mathematics | en_US |
dc.rights | © 2010 Society for Industrial and Applied Mathematics | en_US |
dc.subject | Spherical design | en_US |
dc.subject | Fundamental system | en_US |
dc.subject | Mesh norm | en_US |
dc.subject | Maximum determinant | en_US |
dc.subject | Lebesgue constant | en_US |
dc.subject | Numerical integration | en_US |
dc.subject | Interpolation | en_US |
dc.subject | Interval method | en_US |
dc.title | Well conditioned spherical designs for integration and interpolation on the two-sphere | en_US |
dc.type | Journal/Magazine Article | en_US |
dc.identifier.spage | 2135 | - |
dc.identifier.epage | 2157 | - |
dc.identifier.volume | 48 | - |
dc.identifier.issue | 6 | - |
dc.identifier.doi | 10.1137/100795140 | - |
dcterms.abstract | A set X[sub N] of N points on the unit sphere is a spherical t-design if the average value of any polynomial of degree at most t over X [sub N] is equal to the average value of the polynomial over the sphere. This paper considers the characterization and computation of spherical t-designs on the unit sphere S² ⊂ ℝ³ when N≥(t+1)², the dimension of the space P [sub t] of spherical polynomials of degree at most t. We show how to construct well conditioned spherical designs with N≥(t+1)² points by maximizing the determinant of a matrix while satisfying a system of nonlinear constraints. Interval methods are then used to prove the existence of a true spherical t-design very close to the calculated points and to provide a guaranteed interval containing the determinant. The resulting spherical designs have good geometrical properties (separation and mesh norm). We discuss the usefulness of the points for both equal weight numerical integration and polynomial interpolation on the sphere and give an example. | - |
dcterms.accessRights | open access | en_US |
dcterms.bibliographicCitation | SIAM journal on numerical analysis, 2010, v. 48, no. 6, p. 2135–2157 | - |
dcterms.isPartOf | SIAM journal on numerical analysis | - |
dcterms.issued | 2010 | - |
dc.identifier.isi | WOS:000285551300006 | - |
dc.identifier.scopus | 2-s2.0-79251473716 | - |
dc.identifier.rosgroupid | r53175 | - |
dc.description.ros | 2010-2011 > Academic research: refereed > Publication in refereed journal | - |
dc.description.oa | Version of Record | en_US |
dc.identifier.FolderNumber | OA_IR/PIRA | en_US |
dc.description.pubStatus | Published | en_US |
dc.description.oaCategory | VoR allowed | en_US |
Appears in Collections: | Journal/Magazine Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
An_Spherical_Designs_Two-Sphere.pdf | 818.85 kB | Adobe PDF | View/Open |
Page views
190
Last Week
2
2
Last month
Citations as of Sep 8, 2024
Downloads
310
Citations as of Sep 8, 2024
SCOPUSTM
Citations
29
Last Week
1
1
Last month
0
0
Citations as of Sep 19, 2024
WEB OF SCIENCETM
Citations
27
Last Week
0
0
Last month
0
0
Citations as of Sep 19, 2024
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.