Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/6097
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorAn, C-
dc.creatorChen, X-
dc.creatorSloan, IH-
dc.creatorWomersley, RS-
dc.date.accessioned2014-12-11T08:24:52Z-
dc.date.available2014-12-11T08:24:52Z-
dc.identifier.issn0036-1429 (print)-
dc.identifier.issn1095-7170 (online)-
dc.identifier.urihttp://hdl.handle.net/10397/6097-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2010 Society for Industrial and Applied Mathematicsen_US
dc.subjectSpherical designen_US
dc.subjectFundamental systemen_US
dc.subjectMesh normen_US
dc.subjectMaximum determinanten_US
dc.subjectLebesgue constanten_US
dc.subjectNumerical integrationen_US
dc.subjectInterpolationen_US
dc.subjectInterval methoden_US
dc.titleWell conditioned spherical designs for integration and interpolation on the two-sphereen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage2135-
dc.identifier.epage2157-
dc.identifier.volume48-
dc.identifier.issue6-
dc.identifier.doi10.1137/100795140-
dcterms.abstractA set X[sub N] of N points on the unit sphere is a spherical t-design if the average value of any polynomial of degree at most t over X [sub N] is equal to the average value of the polynomial over the sphere. This paper considers the characterization and computation of spherical t-designs on the unit sphere S² ⊂ ℝ³ when N≥(t+1)², the dimension of the space P [sub t] of spherical polynomials of degree at most t. We show how to construct well conditioned spherical designs with N≥(t+1)² points by maximizing the determinant of a matrix while satisfying a system of nonlinear constraints. Interval methods are then used to prove the existence of a true spherical t-design very close to the calculated points and to provide a guaranteed interval containing the determinant. The resulting spherical designs have good geometrical properties (separation and mesh norm). We discuss the usefulness of the points for both equal weight numerical integration and polynomial interpolation on the sphere and give an example.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on numerical analysis, 2010, v. 48, no. 6, p. 2135–2157-
dcterms.isPartOfSIAM journal on numerical analysis-
dcterms.issued2010-
dc.identifier.isiWOS:000285551300006-
dc.identifier.scopus2-s2.0-79251473716-
dc.identifier.rosgroupidr53175-
dc.description.ros2010-2011 > Academic research: refereed > Publication in refereed journal-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
An_Spherical_Designs_Two-Sphere.pdf818.85 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

190
Last Week
2
Last month
Citations as of Sep 8, 2024

Downloads

310
Citations as of Sep 8, 2024

SCOPUSTM   
Citations

29
Last Week
1
Last month
0
Citations as of Sep 19, 2024

WEB OF SCIENCETM
Citations

27
Last Week
0
Last month
0
Citations as of Sep 19, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.