Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/5955
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorGu, GZ-
dc.creatorLi, DH-
dc.creatorQi, L-
dc.creatorZhou, SZ-
dc.date.accessioned2014-12-11T08:24:25Z-
dc.date.available2014-12-11T08:24:25Z-
dc.identifier.issn0036-1429 (print)-
dc.identifier.issn1095-7170 (online)-
dc.identifier.urihttp://hdl.handle.net/10397/5955-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2002 Society for Industrial and Applied Mathematicsen_US
dc.subjectBFGS methoden_US
dc.subjectNorm descent directionen_US
dc.subjectGlobal convergenceen_US
dc.subjectSuperlinear convergenceen_US
dc.titleDescent directions of quasi-Newton methods for symmetric nonlinear equationsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage1763-
dc.identifier.epage1774-
dc.identifier.volume40-
dc.identifier.issue5-
dc.identifier.doi10.1137/S0036142901397423-
dcterms.abstractIn general, when a quasi-Newton method is applied to solve a system of nonlinear equations, the quasi-Newton direction is not necessarily a descent direction for the norm function. In this paper, we show that when applied to solve symmetric nonlinear equations, a quasi-Newton method with positive definite iterative matrices may generate descent directions for the norm function. On the basis of a Gauss--Newton based BFGS method [D. H. Li and M. Fukushima, SIAM J. Numer. Anal., 37 (1999), pp. 152--172], we develop a norm descent BFGS method for solving symmetric nonlinear equations. Under mild conditions, we establish the global and superlinear convergence of the method. The proposed method shares some favorable properties of the BFGS method for solving unconstrained optimization problems: (a) the generated sequence of the quasi-Newton matrices is positive definite; (b) the generated sequence of iterates is norm descent; (c) a global convergence theorem is established without nonsingularity assumption on the Jacobian. Preliminary numerical results are reported, which positively support the method.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on numerical analysis, 2002, v. 40, no. 5, p. 1763–1774-
dcterms.isPartOfSIAM Journal on numerical analysis-
dcterms.issued2002-
dc.identifier.isiWOS:000180172100008-
dc.identifier.scopus2-s2.0-0344896693-
dc.identifier.rosgroupidr13893-
dc.description.ros2002-2003 > Academic research: refereed > Publication in refereed journal-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Gu_Descent_Directions_Quasi-Newton.pdf154.25 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

216
Last Week
0
Last month
Citations as of Nov 10, 2025

Downloads

496
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

62
Last Week
0
Last month
0
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

62
Last Week
0
Last month
2
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.