Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/5955
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Applied Mathematics | - |
| dc.creator | Gu, GZ | - |
| dc.creator | Li, DH | - |
| dc.creator | Qi, L | - |
| dc.creator | Zhou, SZ | - |
| dc.date.accessioned | 2014-12-11T08:24:25Z | - |
| dc.date.available | 2014-12-11T08:24:25Z | - |
| dc.identifier.issn | 0036-1429 (print) | - |
| dc.identifier.issn | 1095-7170 (online) | - |
| dc.identifier.uri | http://hdl.handle.net/10397/5955 | - |
| dc.language.iso | en | en_US |
| dc.publisher | Society for Industrial and Applied Mathematics | en_US |
| dc.rights | © 2002 Society for Industrial and Applied Mathematics | en_US |
| dc.subject | BFGS method | en_US |
| dc.subject | Norm descent direction | en_US |
| dc.subject | Global convergence | en_US |
| dc.subject | Superlinear convergence | en_US |
| dc.title | Descent directions of quasi-Newton methods for symmetric nonlinear equations | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.spage | 1763 | - |
| dc.identifier.epage | 1774 | - |
| dc.identifier.volume | 40 | - |
| dc.identifier.issue | 5 | - |
| dc.identifier.doi | 10.1137/S0036142901397423 | - |
| dcterms.abstract | In general, when a quasi-Newton method is applied to solve a system of nonlinear equations, the quasi-Newton direction is not necessarily a descent direction for the norm function. In this paper, we show that when applied to solve symmetric nonlinear equations, a quasi-Newton method with positive definite iterative matrices may generate descent directions for the norm function. On the basis of a Gauss--Newton based BFGS method [D. H. Li and M. Fukushima, SIAM J. Numer. Anal., 37 (1999), pp. 152--172], we develop a norm descent BFGS method for solving symmetric nonlinear equations. Under mild conditions, we establish the global and superlinear convergence of the method. The proposed method shares some favorable properties of the BFGS method for solving unconstrained optimization problems: (a) the generated sequence of the quasi-Newton matrices is positive definite; (b) the generated sequence of iterates is norm descent; (c) a global convergence theorem is established without nonsingularity assumption on the Jacobian. Preliminary numerical results are reported, which positively support the method. | - |
| dcterms.accessRights | open access | en_US |
| dcterms.bibliographicCitation | SIAM journal on numerical analysis, 2002, v. 40, no. 5, p. 1763–1774 | - |
| dcterms.isPartOf | SIAM Journal on numerical analysis | - |
| dcterms.issued | 2002 | - |
| dc.identifier.isi | WOS:000180172100008 | - |
| dc.identifier.scopus | 2-s2.0-0344896693 | - |
| dc.identifier.rosgroupid | r13893 | - |
| dc.description.ros | 2002-2003 > Academic research: refereed > Publication in refereed journal | - |
| dc.description.oa | Version of Record | en_US |
| dc.identifier.FolderNumber | OA_IR/PIRA | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.description.oaCategory | VoR allowed | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Gu_Descent_Directions_Quasi-Newton.pdf | 154.25 kB | Adobe PDF | View/Open |
Page views
216
Last Week
0
0
Last month
Citations as of Nov 10, 2025
Downloads
496
Citations as of Nov 10, 2025
SCOPUSTM
Citations
62
Last Week
0
0
Last month
0
0
Citations as of Dec 19, 2025
WEB OF SCIENCETM
Citations
62
Last Week
0
0
Last month
2
2
Citations as of Dec 18, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



