Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/5954
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Applied Mathematics | - |
| dc.creator | Zhang, X | - |
| dc.creator | Ling, C | - |
| dc.creator | Qi, L | - |
| dc.date.accessioned | 2014-12-11T08:24:28Z | - |
| dc.date.available | 2014-12-11T08:24:28Z | - |
| dc.identifier.issn | 0895-4798 | - |
| dc.identifier.uri | http://hdl.handle.net/10397/5954 | - |
| dc.language.iso | en | en_US |
| dc.publisher | Society for Industrial and Applied Mathematics | en_US |
| dc.rights | © 2012 Society for Industrial and Applied Mathematics | en_US |
| dc.subject | Symmetric tensor | en_US |
| dc.subject | The best rank-1 approximation | en_US |
| dc.subject | The best symmetric rank-1 approximation | en_US |
| dc.subject | Power algorithm | en_US |
| dc.title | The best rank-1 approximation of a symmetric tensor and related spherical optimization problems | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.spage | 806 | - |
| dc.identifier.epage | 821 | - |
| dc.identifier.volume | 33 | - |
| dc.identifier.issue | 3 | - |
| dc.identifier.doi | 10.1137/110835335 | - |
| dcterms.abstract | In this paper, we show that for a symmetric tensor, its best symmetric rank-1 approximation is its best rank-1 approximation. Based on this result, a positive lower bound for the best rank-1 approximation ratio of a symmetric tensor is given. Furthermore, a higher order polynomial spherical optimization problem can be reformulated as a multilinear spherical optimization problem. Then, we present a modified power algorithm for solving the homogeneous polynomial spherical optimization problem. Numerical results are presented, illustrating the effectiveness of the proposed algorithm. | - |
| dcterms.accessRights | open access | en_US |
| dcterms.bibliographicCitation | SIAM journal on matrix analysis and applications, 2012, v. 33, no. 3, p. 806–821 | - |
| dcterms.isPartOf | SIAM journal on matrix analysis and applications | - |
| dcterms.issued | 2012 | - |
| dc.identifier.isi | WOS:000310150300006 | - |
| dc.identifier.scopus | 2-s2.0-84867305742 | - |
| dc.identifier.eissn | 1095-7162 | - |
| dc.identifier.rosgroupid | r66763 | - |
| dc.description.ros | 2012-2013 > Academic research: refereed > Publication in refereed journal | - |
| dc.description.oa | Version of Record | en_US |
| dc.identifier.FolderNumber | OA_IR/PIRA | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.description.oaCategory | VoR allowed | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Zhang_Best_Rank-1_Approximation.pdf | 258.49 kB | Adobe PDF | View/Open |
Page views
250
Last Week
25
25
Last month
Citations as of Nov 10, 2025
Downloads
487
Citations as of Nov 10, 2025
SCOPUSTM
Citations
73
Last Week
0
0
Last month
1
1
Citations as of Dec 19, 2025
WEB OF SCIENCETM
Citations
74
Last Week
0
0
Last month
1
1
Citations as of Dec 18, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



