Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/5878
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorHuang, J-
dc.creatorWang, G-
dc.creatorXiong, J-
dc.date.accessioned2014-12-11T08:24:22Z-
dc.date.available2014-12-11T08:24:22Z-
dc.identifier.issn0363-0129-
dc.identifier.urihttp://hdl.handle.net/10397/5878-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2009 Society for Industrial and Applied Mathematicsen_US
dc.subjectBackword stochastic differential equationen_US
dc.subjectStochastic filteringen_US
dc.subjectLinear-quadratic controlen_US
dc.subjectMaximum principleen_US
dc.subjectPartial informationen_US
dc.subjectPension funden_US
dc.titleA maximum principle for partial information backward stochastic control problems with applicationsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage2106-
dc.identifier.epage2117-
dc.identifier.volume48-
dc.identifier.issue4-
dc.identifier.doi10.1137/080738465-
dcterms.abstractThis paper studies the partial information control problems of backward stochastic systems. There are three major contributions made in this paper: (i) First, we obtain a new stochastic maximum principle for partial information control problems. Our method relies on a direct calculation of the derivative of the cost functional. (ii) Second, we introduce two classes of partial information linear-quadratic backward control problems for the first time and then investigate them using the maximum principle. Complete and explicit solutions are obtained in terms of some forward and backward stochastic differential filtering equations. (iii) Last but not least, we study a class of full information stochastic pension fund optimization problems which can be viewed as a special case of our general partial information ones. Applying the aforementioned maximum principle, we derive the optimal contribution policy in closed-form and present some related economic remarks.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on control and optimization, 2009, v. 48, no. 4, p. 2106–2117-
dcterms.isPartOfSIAM Journal on control and optimization-
dcterms.issued2009-
dc.identifier.isiWOS:000270194500003-
dc.identifier.scopus2-s2.0-67949121966-
dc.identifier.eissn1095-7138-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Huang_Maximum_Principle_Stochastic.pdf185.7 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

228
Last Week
1
Last month
Citations as of Nov 10, 2025

Downloads

516
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

90
Last Week
1
Last month
0
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

87
Last Week
0
Last month
3
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.