Please use this identifier to cite or link to this item:
PIRA download icon_1.1View/Download Full Text
Title: Tunable strain effect and ferroelectric field effect on the electronic transport properties of La₀.₅Sr₀.₅CoO₃ thin films
Authors: Zhu, QX
Wang, W
Zhao, XQ
Li, XM
Wang, Y 
Luo, HS
Chan, HLW 
Zheng, RK
Issue Date: 15-May-2012
Source: Journal of applied physics, 15 May 2012, v. 111, no. 10, 103702, p. 1-7
Abstract: Tensiled La₀.₅Sr₀.₅CoO₃ (LSCO) thin films were epitaxially grown on piezoelectric 0.67Pb (Mg[sub 1/3]Nb[sub 2/3])O₃-0.33PbTiO₃ (PMN-PT) single-crystal substrates. Due to the epitaxial nature of the interface, the lattice strain induced by ferroelectric poling or the converse piezoelectric effect in the PMN-PT substrate is effectively transferred to the LSCO film and thus reduces the tensile strain of the film, giving rise to a decrease in the resistivity of the LSCO film. We discuss these strain effects within the framework of the spin state transition of Co³⁺ ions and modification of the electronic bandwidth that is relevant to the induced strain. By simultaneously measuring the strain and the resistivity, quantitative relationship between the resistivity and the strain was established for the LSCO film. Both theoretical calculation and experimental results demonstrate that the ferroelectric field effect at room temperature in the LSCO/PMN-PT field-effect transistor is minor and could be neglected. Nevertheless, with decreasing temperature, the ferroelectric field effect competes with the strain effect and plays a more and more important role in influencing the electronic transport properties of the LSCO film, which we interpreted as due to the localization of charge carriers at low temperature.
Keywords: Dielectric polarisation
Electrical resistivity
Ferroelectric materials
Ferroelectric thin films
Ferroelectric transitions
Lanthanum compounds
Strontium compounds
Publisher: American Institute of Physics
Journal: Journal of applied physics 
ISSN: 0021-8979
EISSN: 1089-7550
DOI: 10.1063/1.4716188
Rights: © 2012 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Q. X. Zhu et al., J. Appl. Phys. 111, 103702 (2012) and may be found at
Appears in Collections:Journal/Magazine Article

Files in This Item:
File Description SizeFormat 
Zhu_Tunable_Strain_Effect.pdf1.17 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
View full-text via PolyU eLinks SFX Query
Show full item record

Page views

Last Week
Last month
Citations as of Sep 24, 2023


Citations as of Sep 24, 2023


Last Week
Last month
Citations as of Sep 28, 2023


Last Week
Last month
Citations as of Sep 28, 2023

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.