Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/5817
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Mechanical Engineering-
dc.creatorHuang, HB-
dc.creatorMa, XQ-
dc.creatorLiu, ZH-
dc.creatorZhao, CP-
dc.creatorShi, SQ-
dc.creatorChen, LQ-
dc.date.accessioned2014-12-11T08:23:28Z-
dc.date.available2014-12-11T08:23:28Z-
dc.identifier.issn0003-6951-
dc.identifier.urihttp://hdl.handle.net/10397/5817-
dc.language.isoenen_US
dc.publisherAmerican Institute of Physicsen_US
dc.rights© 2013 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in H.B. Huang et al., Appl. Phys. Lett. 102, 042405 (2013) and may be found at http://link.aip.org/link/?apl/102/042405en_US
dc.subjectAluminium alloysen_US
dc.subjectCobalt alloysen_US
dc.subjectIron alloysen_US
dc.subjectMagnetic anisotropyen_US
dc.subjectMagnetic domain wallsen_US
dc.subjectMagnetic switchingen_US
dc.subjectMicromagneticsen_US
dc.subjectNanomagneticsen_US
dc.subjectNanostructured materialsen_US
dc.subjectSilicon alloysen_US
dc.subjectSpin valvesen_US
dc.titleSimulation of multilevel cell spin transfer switching in a full-Heusler alloy spin-valve nanopillaren_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationAuthor name used in this publication: Shi, S. Q.en_US
dc.identifier.spage1-
dc.identifier.epage5-
dc.identifier.volume102-
dc.identifier.issue4-
dc.identifier.doi10.1063/1.4789867-
dcterms.abstractA multilevel cell spin transfer switching process in a full-Heusler Co₂FeAl₀.₅Si₀.₅ alloy spin-valve nanopillar was investigated using micromagnetic simulations. An intermediate state of two-step spin transfer magnetization switching was reported due to the four-fold magnetocrystalline anisotropy; however, we discovered the intermediate state has two possible directions of −90° and +90°, which could not be detected in the experiments due to the same resistance of the −90° state and the +90° state. The domain structures were analyzed to determine the mechanism of domain wall motion and magnetization switching under a large current. Based on two intermediate states, we reported a multilevel bit spin transfer multi-step magnetization switching by changing the magnetic anisotropy in a full-Heusler alloy nanopillar.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationApplied physics letters, 28 Jan. 2013, v. 102, no. 4, 042405, p. 1-5-
dcterms.isPartOfApplied physics letters-
dcterms.issued2013-01-28-
dc.identifier.isiWOS:000314723600052-
dc.identifier.scopus2-s2.0-84873579862-
dc.identifier.eissn1077-3118-
dc.identifier.rosgroupidr66755-
dc.description.ros2012-2013 > Academic research: refereed > Publication in refereed journal-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.pubStatusPublisheden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Huang_simulation_multilevel_cell.pdf1.72 MBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

123
Last Week
1
Last month
Citations as of Mar 24, 2024

Downloads

197
Citations as of Mar 24, 2024

SCOPUSTM   
Citations

21
Last Week
0
Last month
0
Citations as of Mar 28, 2024

WEB OF SCIENCETM
Citations

19
Last Week
1
Last month
0
Citations as of Mar 28, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.