Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/5748
Title: | Finite element modeling of reinforced concrete beams exposed to fire | Authors: | Gao, WY Dai, JG Teng, JG Chen, GM |
Issue Date: | Jul-2013 | Source: | Engineering structures, July 2013, v. 52, p. 488-501 | Abstract: | The practical implementation of performance-based fire safety design of reinforced concrete (RC) structures hinges on the availability of accurate numerical simulation tools for the behavior of RC members exposed to fire. This paper presents a three-dimensional (3D) finite element (FE) model for the accurate prediction of both the thermal and the mechanical behavior of RC beams exposed to fire. In this FE model, particular attention is paid to the modeling of interfacial bond-slip behavior between the reinforcing steel and the concrete, an aspect which has rarely been considered by previous numerical studies. Results obtained from this FE model are compared with existing test data to examine the accuracy of the model. This comparison shows that the inclusion of the steel-to-concrete interfacial behavior leads to more accurate predictions of the deflection of RC beams exposed to fire. Predictions from this FE model also allow the complex distribution and evolution of stresses in the reinforcing steel and the concrete to be examined in detail, leading to a better understanding of the local responses of RC beams exposed to fire. The FE model presented in the paper can be used directly in performance-based fire safety design of RC beams; it can also be employed in parametric studies aimed at developing simple design rules. | Keywords: | Fire resistance Finite element model Reinforced concrete beams Bond-slip behavior Steel-to-concrete interfaces Performance-based design |
Publisher: | Pergamon Press | Journal: | Engineering structures | ISSN: | 0141-0296 | EISSN: | 1873-7323 | DOI: | 10.1016/j.engstruct.2013.03.017 | Rights: | © 2013 Elsevier Ltd. All rights reserved. NOTICE: this is the author’s version of a work that was accepted for publication in Engineering Structures. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Engineering Structures, vol 52, (July 2013) DOI: 10.1016/j.engstruct.2013.03.017 |
Appears in Collections: | Journal/Magazine Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Gao_Finite_Element_Modeling.pdf | Pre-published version | 482.33 kB | Adobe PDF | View/Open |
Page views
282
Last Week
2
2
Last month
Citations as of Jun 4, 2023
Downloads
1,775
Citations as of Jun 4, 2023
SCOPUSTM
Citations
124
Last Week
0
0
Last month
1
1
Citations as of Jun 2, 2023
WEB OF SCIENCETM
Citations
101
Last Week
0
0
Last month
0
0
Citations as of Jun 1, 2023

Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.