Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/5103
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technology-
dc.creatorAlexander, MH-
dc.creatorSoldán, P-
dc.creatorWright, TG-
dc.creatorKim, Y-
dc.creatorMeyer, H-
dc.creatorDagdigian, PJ-
dc.creatorLee, EPF-
dc.date.accessioned2014-12-11T08:28:53Z-
dc.date.available2014-12-11T08:28:53Z-
dc.identifier.issn0021-9606-
dc.identifier.urihttp://hdl.handle.net/10397/5103-
dc.language.isoenen_US
dc.publisherAmerican Institute of Physicsen_US
dc.rights© 2001 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in M. H. Alexander et al., J. Chem. Phys. 114, 5588 (2001) and may be found at http://link.aip.org/link/?jcp/114/5588.en_US
dc.subjectNitrogen compoundsen_US
dc.subjectNeonen_US
dc.subjectBound statesen_US
dc.subjectPotential energy surfacesen_US
dc.subjectVibrational statesen_US
dc.subjectQuasimoleculesen_US
dc.titleThe NO(X²II) –Ne complex. II. investigation of the lower bound states based on new potential energy surfacesen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage5588-
dc.identifier.epage5597-
dc.identifier.volume114-
dc.identifier.issue13-
dc.identifier.doi10.1063/1.1349086-
dcterms.abstractHigh-quality ab initio potential energy surfaces were calculated and subsequently used to predict the positions of the lowest bend-stretch vibrational states of the NO(X²II,v=0)–Ne complex. The vibrational wavefunctions and basis set expansion coefficients, determined within the adiabatic bender model, were then used to simulate the observed spectrum for excitation of the NO(X²II, v=2)–Ne complex. The overall position and rotational substructure matches well the experimental results for this system, which are presented in the preceding article [Y. Kim, J. Fleniken and H. Meyer, J. Chem. Phys. 114, 5577 (2001)]. A heuristic Hamiltonian, which includes the most important couplings and splittings, is used to improve the fit to experiment.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of chemical physics, 1 Apr. 2001, v. 114, no. 13, p. 5588-5597-
dcterms.isPartOfJournal of chemical physics-
dcterms.issued2001-04-01-
dc.identifier.isiWOS:000167578400018-
dc.identifier.scopus2-s2.0-0035310161-
dc.identifier.eissn1089-7690-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.pubStatusPublisheden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Alexander_Complex_investigation_lower.pdf760.89 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

91
Last Week
1
Last month
Citations as of Apr 21, 2024

Downloads

83
Citations as of Apr 21, 2024

SCOPUSTM   
Citations

29
Last Week
0
Last month
0
Citations as of Apr 19, 2024

WEB OF SCIENCETM
Citations

28
Last Week
0
Last month
1
Citations as of Apr 25, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.