Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/5102
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Biology and Chemical Technology-
dc.creatorSoldán, P-
dc.creatorLee, EPF-
dc.creatorWright, TG-
dc.date.accessioned2014-12-11T08:28:53Z-
dc.date.available2014-12-11T08:28:53Z-
dc.identifier.issn0021-9606-
dc.identifier.urihttp://hdl.handle.net/10397/5102-
dc.language.isoenen_US
dc.publisherAmerican Institute of Physicsen_US
dc.rights© 2002 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in P. Soldán, E. P. F. Lee & T. G. Wright et al., J. Chem. Phys. 116, 2395 (2002) and may be found at http://link.aip.org/link/?jcp/116/2395.en_US
dc.subjectHelium neutral atomsen_US
dc.subjectNitrogen compoundsen_US
dc.subjectPositive ionsen_US
dc.subjectPotential energy functionsen_US
dc.subjectRotational statesen_US
dc.subjectVibrational statesen_US
dc.subjectHilbert spacesen_US
dc.subjectDissociation energiesen_US
dc.subjectQuasimoleculesen_US
dc.subjectAb initio calculationsen_US
dc.subjectBound statesen_US
dc.subjectRelativistic correctionsen_US
dc.titleThe intermolecular potential energy surface of the He.NO⁺ cationic complexen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage2395-
dc.identifier.epage2399-
dc.identifier.volume116-
dc.identifier.issue6-
dc.identifier.doi10.1063/1.1433507-
dcterms.abstractClose-coupling calculations of bound rotational and vibrational states are carried out on a new intermolecular potential energy function based on 200 energies of the He.NO⁺ cationic complex calculated at the coupled-cluster single double (triple)/aug-cc-pV5Z ab initio level of theory at a range of geometries and point-by-point corrected for basis set superposition error. The potential energy function is constructed by combining the reciprocal power reproducing kernel Hilbert space interpolation with Gauss–Legendre quadrature. The best estimate of the intermolecular dissociation energy, Dₑ, is 198±4 cm⁻1, obtained by extrapolations to the complete basis set limit, and calculating estimates for relativistic effects and core and core-valence correlation effects.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationJournal of chemical physics, 8 Feb. 2002, v. 116, no. 6, p. 2395-2399-
dcterms.isPartOfJournal of chemical physics-
dcterms.issued2002-02-08-
dc.identifier.isiWOS:000173618400010-
dc.identifier.scopus2-s2.0-0037040040-
dc.identifier.eissn1089-7690-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.pubStatusPublisheden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Soldán_Intermolecular_potential_energy.pdf679.67 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

169
Last Week
2
Last month
Citations as of Apr 21, 2024

Downloads

171
Citations as of Apr 21, 2024

SCOPUSTM   
Citations

12
Last Week
0
Last month
0
Citations as of Apr 19, 2024

WEB OF SCIENCETM
Citations

11
Last Week
0
Last month
0
Citations as of Apr 25, 2024

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.