Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/4765
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorQi, L-
dc.creatorWan, Z-
dc.creatorYang, YF-
dc.date.accessioned2014-12-11T08:27:02Z-
dc.date.available2014-12-11T08:27:02Z-
dc.identifier.issn1052-6234-
dc.identifier.urihttp://hdl.handle.net/10397/4765-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2004 Society for Industrial and Applied Mathematicsen_US
dc.subjectGlobal optimizationen_US
dc.subjectNormal quartic polynomialen_US
dc.subjectTensoren_US
dc.titleGlobal minimization of normal quartic polynomials based on global descent directionsen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage275-
dc.identifier.epage302-
dc.identifier.volume15-
dc.identifier.issue1-
dc.identifier.doi10.1137/S1052623403420857-
dcterms.abstractA normal quartic polynomial is a quartic polynomial whose fourth degree term coefficient tensor is positive definite. Its minimization problem is one of the simplest cases of nonconvex global optimization, and has engineering applications. We call a direction a global descent direction of a function at a point if there is another point with a lower function value along this direction. For a normal quartic polynomial, we present a criterion to find a global descent direction at a noncritical point, a saddle point, or a local maximizer. We give sufficient conditions to judge whether a local minimizer is global and give a method for finding a global descent direction at a local, but not global, minimizer. We also give a formula at a critical point and a method at a noncritical point to find a one-dimensional global minimizer along a global descent direction. Based upon these, we propose a global descent algorithm for finding a global minimizer of a normal quartic polynomial when n = 2. For the case n ≥ 3, we propose an algorithm for finding an ε-global minimizer. At each iteration of a second algorithm, a system of constrained nonlinear equations is solved. Numerical tests show that these two algorithms are promising.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on optimization, 2004, v. 15, no. 1, p. 275-302-
dcterms.isPartOfSIAM journal on optimization-
dcterms.issued2004-
dc.identifier.isiWOS:000226048600014-
dc.identifier.scopus2-s2.0-14944344547-
dc.identifier.eissn1095-7189-
dc.identifier.rosgroupidr29990-
dc.description.ros2005-2006 > Academic research: refereed > Publication in refereed journal-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Qi_Global_minimization_normal.pdf360.14 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

233
Last Week
10
Last month
Citations as of Nov 10, 2025

Downloads

645
Citations as of Nov 10, 2025

SCOPUSTM   
Citations

16
Last Week
0
Last month
0
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

12
Last Week
0
Last month
0
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.