Please use this identifier to cite or link to this item:
http://hdl.handle.net/10397/4760
| DC Field | Value | Language |
|---|---|---|
| dc.contributor | Department of Applied Mathematics | - |
| dc.creator | Dontchev, AL | - |
| dc.creator | Qi, HD | - |
| dc.creator | Qi, L | - |
| dc.creator | Yin, H | - |
| dc.date.accessioned | 2014-12-11T08:26:58Z | - |
| dc.date.available | 2014-12-11T08:26:58Z | - |
| dc.identifier.issn | 1052-6234 | - |
| dc.identifier.uri | http://hdl.handle.net/10397/4760 | - |
| dc.language.iso | en | en_US |
| dc.publisher | Society for Industrial and Applied Mathematics | en_US |
| dc.rights | © 2002 Society for Industrial and Applied Mathematics | en_US |
| dc.subject | Shape-preserving interpolation | en_US |
| dc.subject | Splines | en_US |
| dc.subject | Semismooth equation | en_US |
| dc.subject | Newton’s method | en_US |
| dc.subject | Quadratic convergence | en_US |
| dc.title | A Newton method for shape-preserving spline interpolation | en_US |
| dc.type | Journal/Magazine Article | en_US |
| dc.identifier.spage | 588 | - |
| dc.identifier.epage | 602 | - |
| dc.identifier.volume | 13 | - |
| dc.identifier.issue | 2 | - |
| dc.identifier.doi | 10.1137/S1052623401393128 | - |
| dcterms.abstract | In 1986, Irvine, Marin, and Smith proposed a Newton-type method for shape-preserving interpolation and, based on numerical experience, conjectured its quadratic convergence. In this paper, we prove local quadratic convergence of their method by viewing it as a semismooth Newton method. We also present a modification of the method which has global quadratic convergence. Numerical examples illustrate the results. | - |
| dcterms.accessRights | open access | en_US |
| dcterms.bibliographicCitation | SIAM journal on optimization, 2002, v. 13, no. 2, p. 588-602 | - |
| dcterms.isPartOf | SIAM journal on optimization | - |
| dcterms.issued | 2002 | - |
| dc.identifier.isi | WOS:000179104800014 | - |
| dc.identifier.scopus | 2-s2.0-0013103573 | - |
| dc.identifier.eissn | 1095-7189 | - |
| dc.identifier.rosgroupid | r12416 | - |
| dc.description.ros | 2002-2003 > Academic research: refereed > Publication in refereed journal | - |
| dc.description.oa | Version of Record | en_US |
| dc.identifier.FolderNumber | OA_IR/PIRA | en_US |
| dc.description.pubStatus | Published | en_US |
| dc.description.oaCategory | VoR allowed | en_US |
| Appears in Collections: | Journal/Magazine Article | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Dontchev_Newton_method_shape.pdf | 195.34 kB | Adobe PDF | View/Open |
Page views
174
Last Week
0
0
Last month
Citations as of Oct 6, 2025
Downloads
216
Citations as of Oct 6, 2025
SCOPUSTM
Citations
12
Last Week
1
1
Last month
0
0
Citations as of Oct 24, 2025
WEB OF SCIENCETM
Citations
13
Last Week
0
0
Last month
0
0
Citations as of Oct 23, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.



