Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/4760
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Mathematics-
dc.creatorDontchev, AL-
dc.creatorQi, HD-
dc.creatorQi, L-
dc.creatorYin, H-
dc.date.accessioned2014-12-11T08:26:58Z-
dc.date.available2014-12-11T08:26:58Z-
dc.identifier.issn1052-6234-
dc.identifier.urihttp://hdl.handle.net/10397/4760-
dc.language.isoenen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.rights© 2002 Society for Industrial and Applied Mathematicsen_US
dc.subjectShape-preserving interpolationen_US
dc.subjectSplinesen_US
dc.subjectSemismooth equationen_US
dc.subjectNewton’s methoden_US
dc.subjectQuadratic convergenceen_US
dc.titleA Newton method for shape-preserving spline interpolationen_US
dc.typeJournal/Magazine Articleen_US
dc.identifier.spage588-
dc.identifier.epage602-
dc.identifier.volume13-
dc.identifier.issue2-
dc.identifier.doi10.1137/S1052623401393128-
dcterms.abstractIn 1986, Irvine, Marin, and Smith proposed a Newton-type method for shape-preserving interpolation and, based on numerical experience, conjectured its quadratic convergence. In this paper, we prove local quadratic convergence of their method by viewing it as a semismooth Newton method. We also present a modification of the method which has global quadratic convergence. Numerical examples illustrate the results.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationSIAM journal on optimization, 2002, v. 13, no. 2, p. 588-602-
dcterms.isPartOfSIAM journal on optimization-
dcterms.issued2002-
dc.identifier.isiWOS:000179104800014-
dc.identifier.scopus2-s2.0-0013103573-
dc.identifier.eissn1095-7189-
dc.identifier.rosgroupidr12416-
dc.description.ros2002-2003 > Academic research: refereed > Publication in refereed journal-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_IR/PIRAen_US
dc.description.pubStatusPublisheden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
Dontchev_Newton_method_shape.pdf195.34 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

61
Last Week
2
Last month
Citations as of Jun 26, 2022

Downloads

115
Citations as of Jun 26, 2022

SCOPUSTM   
Citations

11
Last Week
1
Last month
0
Citations as of Jun 30, 2022

WEB OF SCIENCETM
Citations

12
Last Week
0
Last month
0
Citations as of Jun 30, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.