Please use this identifier to cite or link to this item: http://hdl.handle.net/10397/423
PIRA download icon_1.1View/Download Full Text
DC FieldValueLanguage
dc.contributorDepartment of Applied Physics-
dc.contributorMaterials Research Centre-
dc.creatorWang, Sen_US
dc.creatorLam, KHen_US
dc.creatorSun, Cen_US
dc.creatorKwok, KWen_US
dc.creatorChan, HLWen_US
dc.creatorGuo, Men_US
dc.creatorZhao, Xen_US
dc.date.accessioned2014-12-11T08:28:08Z-
dc.date.available2014-12-11T08:28:08Z-
dc.identifier.issn0003-6951en_US
dc.identifier.urihttp://hdl.handle.net/10397/423-
dc.language.isoenen_US
dc.publisherAmerican Institute of Physicsen_US
dc.rights© 2007 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in S. Wang et al., Appl. Phys. Lett. 90, 113506 (2007) and may be found at http://link.aip.org/link/?apl/90/113506.en_US
dc.subjectPiezoelectric transducersen_US
dc.subjectVibrationsen_US
dc.titleEnergy harvesting with piezoelectric drum transduceren_US
dc.typeJournal/Magazine Articleen_US
dc.description.otherinformationAuthor name used in this publication: Kwok Ho Lamen_US
dc.description.otherinformationAuthor name used in this publication: Cheng Liang Sunen_US
dc.description.otherinformationAuthor name used in this publication: Kin Wing Kwoken_US
dc.description.otherinformationAuthor name used in this publication: Helen Lai Wa Chanen_US
dc.description.otherinformationAuthor name used in this publication: Ming Sen Guoen_US
dc.description.otherinformationAuthor name used in this publication: Xing-Zhong Zhaoen_US
dc.identifier.spage1en_US
dc.identifier.epage3en_US
dc.identifier.volume90en_US
dc.identifier.doi10.1063/1.2713357en_US
dcterms.abstractPiezoelectric materials can convert ambient vibrations into electrical energy. In this letter, the capability of harvesting the electrical energy from mechanical vibrations in a dynamic environment through a piezoelectric drum transducer has been investigated. Under a prestress of 0.15 N and a cyclic stress of 0.7 N, a power of 11 mW was generated at the resonance frequency of the transducer (590 Hz) across an 18 kΩ resistor. It is found that the energy from the transducer increases while the resonance frequency of the transducer decreases when the prestress increases. The results demonstrate the potential of the drum transducer in energy harvesting.-
dcterms.accessRightsopen accessen_US
dcterms.bibliographicCitationApplied physics letters, 12 Mar. 2007, v. 90, 113506, p. 1-3en_US
dcterms.isPartOfApplied physics lettersen_US
dcterms.issued2007-03-12-
dc.identifier.isiWOS:000244959200099-
dc.identifier.scopus2-s2.0-33947307330-
dc.identifier.eissn1077-3118en_US
dc.identifier.rosgroupidr31968-
dc.description.ros2006-2007 > Academic research: refereed > Publication in refereed journal-
dc.description.oaVersion of Recorden_US
dc.identifier.FolderNumberOA_IR/PIRA-
dc.description.pubStatusPublisheden_US
dc.description.oaCategoryVoR alloweden_US
Appears in Collections:Journal/Magazine Article
Files in This Item:
File Description SizeFormat 
energy-harvesting_07.pdf298.13 kBAdobe PDFView/Open
Open Access Information
Status open access
File Version Version of Record
Access
View full-text via PolyU eLinks SFX Query
Show simple item record

Page views

206
Last Week
1
Last month
Citations as of Aug 13, 2025

Downloads

624
Citations as of Aug 13, 2025

SCOPUSTM   
Citations

99
Last Week
1
Last month
0
Citations as of Dec 19, 2025

WEB OF SCIENCETM
Citations

60
Last Week
0
Last month
0
Citations as of Dec 18, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.